273 lines
5.7 KiB
Markdown
273 lines
5.7 KiB
Markdown
# ToolUniverse Tool Domains and Categories
|
|
|
|
## Overview
|
|
|
|
ToolUniverse integrates 600+ scientific tools across multiple research domains. This document categorizes tools by scientific discipline and use case.
|
|
|
|
## Major Scientific Domains
|
|
|
|
### Bioinformatics
|
|
|
|
**Sequence Analysis:**
|
|
- Sequence alignment and comparison
|
|
- Multiple sequence alignment (MSA)
|
|
- BLAST and homology searches
|
|
- Motif finding and pattern matching
|
|
|
|
**Genomics:**
|
|
- Gene expression analysis
|
|
- RNA-seq data processing
|
|
- Variant calling and annotation
|
|
- Genome assembly and annotation
|
|
- Copy number variation analysis
|
|
|
|
**Functional Analysis:**
|
|
- Gene Ontology (GO) enrichment
|
|
- Pathway analysis (KEGG, Reactome)
|
|
- Gene set enrichment analysis (GSEA)
|
|
- Protein domain analysis
|
|
|
|
**Example Tools:**
|
|
- GEO data download and analysis
|
|
- DESeq2 differential expression
|
|
- KEGG pathway enrichment
|
|
- UniProt sequence retrieval
|
|
- VEP variant annotation
|
|
|
|
### Cheminformatics
|
|
|
|
**Molecular Descriptors:**
|
|
- Chemical property calculation
|
|
- Molecular fingerprints
|
|
- SMILES/InChI conversion
|
|
- 3D conformer generation
|
|
|
|
**Drug Discovery:**
|
|
- Virtual screening
|
|
- Molecular docking
|
|
- ADMET prediction
|
|
- Drug-likeness assessment (Lipinski's Rule of Five)
|
|
- Toxicity prediction
|
|
|
|
**Chemical Databases:**
|
|
- PubChem compound search
|
|
- ChEMBL bioactivity data
|
|
- ZINC compound libraries
|
|
- DrugBank drug information
|
|
|
|
**Example Tools:**
|
|
- RDKit molecular descriptors
|
|
- AutoDock molecular docking
|
|
- ZINC library screening
|
|
- ChEMBL target-compound associations
|
|
|
|
### Structural Biology
|
|
|
|
**Protein Structure:**
|
|
- AlphaFold structure prediction
|
|
- PDB structure retrieval
|
|
- Structure alignment and comparison
|
|
- Binding site prediction
|
|
- Protein-protein interaction prediction
|
|
|
|
**Structure Analysis:**
|
|
- Secondary structure prediction
|
|
- Solvent accessibility calculation
|
|
- Structure quality assessment
|
|
- Ramachandran plot analysis
|
|
|
|
**Example Tools:**
|
|
- AlphaFold structure prediction
|
|
- PDB structure download
|
|
- Fpocket binding site detection
|
|
- DSSP secondary structure assignment
|
|
|
|
### Proteomics
|
|
|
|
**Protein Analysis:**
|
|
- Mass spectrometry data analysis
|
|
- Protein identification
|
|
- Post-translational modification analysis
|
|
- Protein quantification
|
|
|
|
**Protein Databases:**
|
|
- UniProt protein information
|
|
- STRING protein interactions
|
|
- IntAct interaction databases
|
|
|
|
**Example Tools:**
|
|
- UniProt data retrieval
|
|
- STRING interaction networks
|
|
- Mass spec peak analysis
|
|
|
|
### Machine Learning
|
|
|
|
**Model Types:**
|
|
- Classification models
|
|
- Regression models
|
|
- Clustering algorithms
|
|
- Neural networks
|
|
- Deep learning models
|
|
|
|
**Applications:**
|
|
- Predictive modeling
|
|
- Feature selection
|
|
- Dimensionality reduction
|
|
- Pattern recognition
|
|
- Biomarker discovery
|
|
|
|
**Example Tools:**
|
|
- Scikit-learn models
|
|
- TensorFlow/PyTorch models
|
|
- XGBoost predictors
|
|
- Random forest classifiers
|
|
|
|
### Medical/Clinical
|
|
|
|
**Disease Databases:**
|
|
- OpenTargets disease-target associations
|
|
- OMIM genetic disorders
|
|
- ClinVar pathogenic variants
|
|
- DisGeNET disease-gene associations
|
|
|
|
**Clinical Data:**
|
|
- Electronic health records analysis
|
|
- Clinical trial data
|
|
- Diagnostic tools
|
|
- Treatment recommendations
|
|
|
|
**Example Tools:**
|
|
- OpenTargets disease queries
|
|
- ClinVar variant classification
|
|
- OMIM disease lookup
|
|
- FDA drug approval data
|
|
|
|
### Neuroscience
|
|
|
|
**Brain Imaging:**
|
|
- fMRI data analysis
|
|
- Brain atlas mapping
|
|
- Connectivity analysis
|
|
- Neuroimaging pipelines
|
|
|
|
**Neural Data:**
|
|
- Electrophysiology analysis
|
|
- Spike train analysis
|
|
- Neural network simulation
|
|
|
|
### Image Processing
|
|
|
|
**Biomedical Imaging:**
|
|
- Microscopy image analysis
|
|
- Cell segmentation
|
|
- Object detection
|
|
- Image enhancement
|
|
- Feature extraction
|
|
|
|
**Image Analysis:**
|
|
- ImageJ/Fiji tools
|
|
- CellProfiler pipelines
|
|
- Deep learning segmentation
|
|
|
|
### Systems Biology
|
|
|
|
**Network Analysis:**
|
|
- Biological network construction
|
|
- Network topology analysis
|
|
- Module identification
|
|
- Hub gene identification
|
|
|
|
**Modeling:**
|
|
- Systems biology models
|
|
- Metabolic network modeling
|
|
- Signaling pathway simulation
|
|
|
|
## Tool Categories by Use Case
|
|
|
|
### Literature and Knowledge
|
|
|
|
**Literature Search:**
|
|
- PubMed article search
|
|
- Article summarization
|
|
- Citation analysis
|
|
- Knowledge extraction
|
|
|
|
**Knowledge Bases:**
|
|
- Ontology queries (GO, DO, HPO)
|
|
- Database cross-referencing
|
|
- Entity recognition
|
|
|
|
### Data Access
|
|
|
|
**Public Repositories:**
|
|
- GEO (Gene Expression Omnibus)
|
|
- SRA (Sequence Read Archive)
|
|
- PDB (Protein Data Bank)
|
|
- ChEMBL (Bioactivity database)
|
|
|
|
**API Access:**
|
|
- RESTful API clients
|
|
- Database query tools
|
|
- Batch data retrieval
|
|
|
|
### Visualization
|
|
|
|
**Plot Generation:**
|
|
- Heatmaps
|
|
- Volcano plots
|
|
- Manhattan plots
|
|
- Network graphs
|
|
- Molecular structures
|
|
|
|
### Utilities
|
|
|
|
**Data Processing:**
|
|
- Format conversion
|
|
- Data normalization
|
|
- Statistical analysis
|
|
- Quality control
|
|
|
|
**Workflow Management:**
|
|
- Pipeline construction
|
|
- Task orchestration
|
|
- Result aggregation
|
|
|
|
## Finding Tools by Domain
|
|
|
|
Use domain-specific keywords with Tool_Finder:
|
|
|
|
```python
|
|
# Bioinformatics
|
|
tools = tu.run({
|
|
"name": "Tool_Finder_Keyword",
|
|
"arguments": {"description": "RNA-seq genomics", "limit": 10}
|
|
})
|
|
|
|
# Cheminformatics
|
|
tools = tu.run({
|
|
"name": "Tool_Finder_Keyword",
|
|
"arguments": {"description": "molecular docking SMILES", "limit": 10}
|
|
})
|
|
|
|
# Structural biology
|
|
tools = tu.run({
|
|
"name": "Tool_Finder_Keyword",
|
|
"arguments": {"description": "protein structure PDB", "limit": 10}
|
|
})
|
|
|
|
# Clinical
|
|
tools = tu.run({
|
|
"name": "Tool_Finder_Keyword",
|
|
"arguments": {"description": "disease clinical variants", "limit": 10}
|
|
})
|
|
```
|
|
|
|
## Cross-Domain Applications
|
|
|
|
Many scientific problems require tools from multiple domains:
|
|
|
|
- **Precision Medicine**: Genomics + Clinical + Proteomics
|
|
- **Drug Discovery**: Cheminformatics + Structural Biology + Machine Learning
|
|
- **Cancer Research**: Genomics + Pathways + Literature
|
|
- **Neurodegenerative Diseases**: Genomics + Proteomics + Imaging
|