# ToolUniverse Tool Domains and Categories ## Overview ToolUniverse integrates 600+ scientific tools across multiple research domains. This document categorizes tools by scientific discipline and use case. ## Major Scientific Domains ### Bioinformatics **Sequence Analysis:** - Sequence alignment and comparison - Multiple sequence alignment (MSA) - BLAST and homology searches - Motif finding and pattern matching **Genomics:** - Gene expression analysis - RNA-seq data processing - Variant calling and annotation - Genome assembly and annotation - Copy number variation analysis **Functional Analysis:** - Gene Ontology (GO) enrichment - Pathway analysis (KEGG, Reactome) - Gene set enrichment analysis (GSEA) - Protein domain analysis **Example Tools:** - GEO data download and analysis - DESeq2 differential expression - KEGG pathway enrichment - UniProt sequence retrieval - VEP variant annotation ### Cheminformatics **Molecular Descriptors:** - Chemical property calculation - Molecular fingerprints - SMILES/InChI conversion - 3D conformer generation **Drug Discovery:** - Virtual screening - Molecular docking - ADMET prediction - Drug-likeness assessment (Lipinski's Rule of Five) - Toxicity prediction **Chemical Databases:** - PubChem compound search - ChEMBL bioactivity data - ZINC compound libraries - DrugBank drug information **Example Tools:** - RDKit molecular descriptors - AutoDock molecular docking - ZINC library screening - ChEMBL target-compound associations ### Structural Biology **Protein Structure:** - AlphaFold structure prediction - PDB structure retrieval - Structure alignment and comparison - Binding site prediction - Protein-protein interaction prediction **Structure Analysis:** - Secondary structure prediction - Solvent accessibility calculation - Structure quality assessment - Ramachandran plot analysis **Example Tools:** - AlphaFold structure prediction - PDB structure download - Fpocket binding site detection - DSSP secondary structure assignment ### Proteomics **Protein Analysis:** - Mass spectrometry data analysis - Protein identification - Post-translational modification analysis - Protein quantification **Protein Databases:** - UniProt protein information - STRING protein interactions - IntAct interaction databases **Example Tools:** - UniProt data retrieval - STRING interaction networks - Mass spec peak analysis ### Machine Learning **Model Types:** - Classification models - Regression models - Clustering algorithms - Neural networks - Deep learning models **Applications:** - Predictive modeling - Feature selection - Dimensionality reduction - Pattern recognition - Biomarker discovery **Example Tools:** - Scikit-learn models - TensorFlow/PyTorch models - XGBoost predictors - Random forest classifiers ### Medical/Clinical **Disease Databases:** - OpenTargets disease-target associations - OMIM genetic disorders - ClinVar pathogenic variants - DisGeNET disease-gene associations **Clinical Data:** - Electronic health records analysis - Clinical trial data - Diagnostic tools - Treatment recommendations **Example Tools:** - OpenTargets disease queries - ClinVar variant classification - OMIM disease lookup - FDA drug approval data ### Neuroscience **Brain Imaging:** - fMRI data analysis - Brain atlas mapping - Connectivity analysis - Neuroimaging pipelines **Neural Data:** - Electrophysiology analysis - Spike train analysis - Neural network simulation ### Image Processing **Biomedical Imaging:** - Microscopy image analysis - Cell segmentation - Object detection - Image enhancement - Feature extraction **Image Analysis:** - ImageJ/Fiji tools - CellProfiler pipelines - Deep learning segmentation ### Systems Biology **Network Analysis:** - Biological network construction - Network topology analysis - Module identification - Hub gene identification **Modeling:** - Systems biology models - Metabolic network modeling - Signaling pathway simulation ## Tool Categories by Use Case ### Literature and Knowledge **Literature Search:** - PubMed article search - Article summarization - Citation analysis - Knowledge extraction **Knowledge Bases:** - Ontology queries (GO, DO, HPO) - Database cross-referencing - Entity recognition ### Data Access **Public Repositories:** - GEO (Gene Expression Omnibus) - SRA (Sequence Read Archive) - PDB (Protein Data Bank) - ChEMBL (Bioactivity database) **API Access:** - RESTful API clients - Database query tools - Batch data retrieval ### Visualization **Plot Generation:** - Heatmaps - Volcano plots - Manhattan plots - Network graphs - Molecular structures ### Utilities **Data Processing:** - Format conversion - Data normalization - Statistical analysis - Quality control **Workflow Management:** - Pipeline construction - Task orchestration - Result aggregation ## Finding Tools by Domain Use domain-specific keywords with Tool_Finder: ```python # Bioinformatics tools = tu.run({ "name": "Tool_Finder_Keyword", "arguments": {"description": "RNA-seq genomics", "limit": 10} }) # Cheminformatics tools = tu.run({ "name": "Tool_Finder_Keyword", "arguments": {"description": "molecular docking SMILES", "limit": 10} }) # Structural biology tools = tu.run({ "name": "Tool_Finder_Keyword", "arguments": {"description": "protein structure PDB", "limit": 10} }) # Clinical tools = tu.run({ "name": "Tool_Finder_Keyword", "arguments": {"description": "disease clinical variants", "limit": 10} }) ``` ## Cross-Domain Applications Many scientific problems require tools from multiple domains: - **Precision Medicine**: Genomics + Clinical + Proteomics - **Drug Discovery**: Cheminformatics + Structural Biology + Machine Learning - **Cancer Research**: Genomics + Pathways + Literature - **Neurodegenerative Diseases**: Genomics + Proteomics + Imaging