Files
gh-hiroshi75-protografico-p…/skills/fine-tune/prompt_priorities.md
2025-11-29 18:45:58 +08:00

88 lines
2.7 KiB
Markdown

# Prompt Optimization Priorities
A priority guide for applying optimization techniques in order of improvement impact.
## 📊 Optimization Priorities
In order of improvement impact:
### 1. Adding Few-Shot Examples (High Impact, Low Cost)
- **Improvement**: Accuracy +10-20%
- **Cost**: +5-10% (increased input tokens)
- **Implementation Time**: 30 minutes - 1 hour
- **Recommended**: ⭐⭐⭐⭐⭐
### 2. Output Format Structuring (High Impact, Low Cost)
- **Improvement**: Latency -10-20%, Parsing errors -90%
- **Cost**: ±0%
- **Implementation Time**: 15-30 minutes
- **Recommended**: ⭐⭐⭐⭐⭐
### 3. Temperature/Max Tokens Adjustment (Medium Impact, Zero Cost)
- **Improvement**: Latency -10-30%, Cost -20-40%
- **Cost**: Reduction
- **Implementation Time**: 10-15 minutes
- **Recommended**: ⭐⭐⭐⭐⭐
### 4. Clear Instructions and Guidelines (Medium Impact, Low Cost)
- **Improvement**: Accuracy +5-10%, Quality +15-25%
- **Cost**: +2-5%
- **Implementation Time**: 30 minutes - 1 hour
- **Recommended**: ⭐⭐⭐⭐
### 5. Model Selection Optimization (High Impact, Requires Validation)
- **Improvement**: Cost -40-60%
- **Risk**: Accuracy -2-5%
- **Implementation Time**: 2-4 hours (including validation)
- **Recommended**: ⭐⭐⭐⭐
### 6. Prompt Caching (High Impact, Medium Cost)
- **Improvement**: Cost -50-90% (on cache hit)
- **Complexity**: Medium (implementation and monitoring)
- **Implementation Time**: 1-2 hours
- **Recommended**: ⭐⭐⭐⭐
### 7. Chain-of-Thought (High Impact for Specific Tasks)
- **Improvement**: Accuracy +15-30% for complex tasks
- **Cost**: +20-40%
- **Implementation Time**: 1-2 hours
- **Recommended**: ⭐⭐⭐ (complex tasks only)
### 8. Self-Consistency (Limited Use)
- **Improvement**: Accuracy +10-20%
- **Cost**: +200-300%
- **Implementation Time**: 2-3 hours
- **Recommended**: ⭐⭐ (critical decisions only)
## 🔄 Iterative Optimization Process
```
1. Measure baseline
2. Select the most impactful improvement
3. Implement (one change only)
4. Evaluate (with same test cases)
5. Is improvement confirmed?
├─ Yes → Keep change, go to step 2
└─ No → Rollback change, try different improvement
6. Goal achieved?
├─ Yes → Complete
└─ No → Go to step 2
```
## Summary
For effective prompt optimization:
1.**Clarity**: Clear role, task, and output format
2.**Few-Shot Examples**: 3-7 high-quality examples
3.**Structuring**: Structured output like JSON
4.**Parameter Tuning**: Task-appropriate temperature/max_tokens
5.**Incremental Improvement**: One change at a time, measure, validate
6.**Cost-Conscious**: Model selection, caching, max_tokens
7.**Measurement-Driven**: Evaluate all changes quantitatively