# Prompt Optimization Priorities A priority guide for applying optimization techniques in order of improvement impact. ## 📊 Optimization Priorities In order of improvement impact: ### 1. Adding Few-Shot Examples (High Impact, Low Cost) - **Improvement**: Accuracy +10-20% - **Cost**: +5-10% (increased input tokens) - **Implementation Time**: 30 minutes - 1 hour - **Recommended**: ⭐⭐⭐⭐⭐ ### 2. Output Format Structuring (High Impact, Low Cost) - **Improvement**: Latency -10-20%, Parsing errors -90% - **Cost**: ±0% - **Implementation Time**: 15-30 minutes - **Recommended**: ⭐⭐⭐⭐⭐ ### 3. Temperature/Max Tokens Adjustment (Medium Impact, Zero Cost) - **Improvement**: Latency -10-30%, Cost -20-40% - **Cost**: Reduction - **Implementation Time**: 10-15 minutes - **Recommended**: ⭐⭐⭐⭐⭐ ### 4. Clear Instructions and Guidelines (Medium Impact, Low Cost) - **Improvement**: Accuracy +5-10%, Quality +15-25% - **Cost**: +2-5% - **Implementation Time**: 30 minutes - 1 hour - **Recommended**: ⭐⭐⭐⭐ ### 5. Model Selection Optimization (High Impact, Requires Validation) - **Improvement**: Cost -40-60% - **Risk**: Accuracy -2-5% - **Implementation Time**: 2-4 hours (including validation) - **Recommended**: ⭐⭐⭐⭐ ### 6. Prompt Caching (High Impact, Medium Cost) - **Improvement**: Cost -50-90% (on cache hit) - **Complexity**: Medium (implementation and monitoring) - **Implementation Time**: 1-2 hours - **Recommended**: ⭐⭐⭐⭐ ### 7. Chain-of-Thought (High Impact for Specific Tasks) - **Improvement**: Accuracy +15-30% for complex tasks - **Cost**: +20-40% - **Implementation Time**: 1-2 hours - **Recommended**: ⭐⭐⭐ (complex tasks only) ### 8. Self-Consistency (Limited Use) - **Improvement**: Accuracy +10-20% - **Cost**: +200-300% - **Implementation Time**: 2-3 hours - **Recommended**: ⭐⭐ (critical decisions only) ## 🔄 Iterative Optimization Process ``` 1. Measure baseline ↓ 2. Select the most impactful improvement ↓ 3. Implement (one change only) ↓ 4. Evaluate (with same test cases) ↓ 5. Is improvement confirmed? ├─ Yes → Keep change, go to step 2 └─ No → Rollback change, try different improvement ↓ 6. Goal achieved? ├─ Yes → Complete └─ No → Go to step 2 ``` ## Summary For effective prompt optimization: 1. ✅ **Clarity**: Clear role, task, and output format 2. ✅ **Few-Shot Examples**: 3-7 high-quality examples 3. ✅ **Structuring**: Structured output like JSON 4. ✅ **Parameter Tuning**: Task-appropriate temperature/max_tokens 5. ✅ **Incremental Improvement**: One change at a time, measure, validate 6. ✅ **Cost-Conscious**: Model selection, caching, max_tokens 7. ✅ **Measurement-Driven**: Evaluate all changes quantitatively