Files
gh-hiroshi75-protografico-p…/skills/fine-tune/evaluation.md
2025-11-29 18:45:58 +08:00

81 lines
3.4 KiB
Markdown

# Evaluation Methods and Best Practices
Evaluation strategies, metrics, and best practices for fine-tuning LangGraph applications.
**💡 Tip**: For practical evaluation scripts and report templates, see [examples.md](examples.md#phase-2-baseline-evaluation-examples).
## 📚 Table of Contents
This guide is divided into the following sections:
### 1. [Evaluation Metrics Design](./evaluation_metrics.md)
Learn how to define and calculate metrics used for evaluation.
### 2. [Test Case Design](./evaluation_testcases.md)
Understand test case structure, coverage, and design principles.
### 3. [Statistical Significance Testing](./evaluation_statistics.md)
Master methods for multiple runs and statistical analysis.
### 4. [Evaluation Best Practices](./evaluation_practices.md)
Provides practical evaluation guidelines.
## 🎯 Quick Start
### For First-Time Evaluation
1. **[Understand Evaluation Metrics](./evaluation_metrics.md)** - Which metrics to measure
2. **[Design Test Cases](./evaluation_testcases.md)** - Create representative cases
3. **[Learn Statistical Methods](./evaluation_statistics.md)** - Importance of multiple runs
4. **[Follow Best Practices](./evaluation_practices.md)** - Effective evaluation implementation
### Improving Existing Evaluations
1. **[Add Metrics](./evaluation_metrics.md)** - More comprehensive evaluation
2. **[Improve Coverage](./evaluation_testcases.md)** - Enhance test cases
3. **[Strengthen Statistical Validation](./evaluation_statistics.md)** - Improve reliability
4. **[Introduce Automation](./evaluation_practices.md)** - Continuous evaluation pipeline
## 📖 Importance of Evaluation
In fine-tuning, evaluation provides:
- **Quantifying Improvements**: Objective progress measurement
- **Basis for Decision-Making**: Data-driven prioritization
- **Quality Assurance**: Prevention of regressions
- **ROI Demonstration**: Visualization of business value
## 💡 Basic Principles of Evaluation
For effective evaluation:
1.**Multiple Metrics**: Comprehensive assessment of quality, performance, cost, and reliability
2.**Statistical Validation**: Confirm significance through multiple runs
3.**Consistency**: Evaluate with the same test cases under the same conditions
4.**Visualization**: Track improvements with graphs and tables
5.**Documentation**: Record evaluation results and analysis
## 🔍 Troubleshooting
### Large Variance in Evaluation Results
→ Check [Statistical Significance Testing](./evaluation_statistics.md#outlier-detection-and-handling)
### Evaluation Takes Too Long
→ Implement staged evaluation in [Best Practices](./evaluation_practices.md#troubleshooting)
### Unclear Which Metrics to Measure
→ Check [Evaluation Metrics Design](./evaluation_metrics.md) for purpose and use cases of each metric
### Insufficient Test Cases
→ Refer to coverage analysis in [Test Case Design](./evaluation_testcases.md#test-case-design-principles)
## 📋 Related Documentation
- **[Prompt Optimization](./prompt_optimization.md)** - Techniques for prompt improvement
- **[Examples Collection](./examples.md)** - Samples of evaluation scripts and reports
- **[Workflow](./workflow.md)** - Overall fine-tuning flow including evaluation
- **[SKILL.md](./SKILL.md)** - Overview of the fine-tune skill
---
**💡 Tip**: For practical evaluation scripts and templates, see [examples.md](examples.md#phase-2-baseline-evaluation-examples).