# Evaluation Methods and Best Practices Evaluation strategies, metrics, and best practices for fine-tuning LangGraph applications. **💡 Tip**: For practical evaluation scripts and report templates, see [examples.md](examples.md#phase-2-baseline-evaluation-examples). ## 📚 Table of Contents This guide is divided into the following sections: ### 1. [Evaluation Metrics Design](./evaluation_metrics.md) Learn how to define and calculate metrics used for evaluation. ### 2. [Test Case Design](./evaluation_testcases.md) Understand test case structure, coverage, and design principles. ### 3. [Statistical Significance Testing](./evaluation_statistics.md) Master methods for multiple runs and statistical analysis. ### 4. [Evaluation Best Practices](./evaluation_practices.md) Provides practical evaluation guidelines. ## 🎯 Quick Start ### For First-Time Evaluation 1. **[Understand Evaluation Metrics](./evaluation_metrics.md)** - Which metrics to measure 2. **[Design Test Cases](./evaluation_testcases.md)** - Create representative cases 3. **[Learn Statistical Methods](./evaluation_statistics.md)** - Importance of multiple runs 4. **[Follow Best Practices](./evaluation_practices.md)** - Effective evaluation implementation ### Improving Existing Evaluations 1. **[Add Metrics](./evaluation_metrics.md)** - More comprehensive evaluation 2. **[Improve Coverage](./evaluation_testcases.md)** - Enhance test cases 3. **[Strengthen Statistical Validation](./evaluation_statistics.md)** - Improve reliability 4. **[Introduce Automation](./evaluation_practices.md)** - Continuous evaluation pipeline ## 📖 Importance of Evaluation In fine-tuning, evaluation provides: - **Quantifying Improvements**: Objective progress measurement - **Basis for Decision-Making**: Data-driven prioritization - **Quality Assurance**: Prevention of regressions - **ROI Demonstration**: Visualization of business value ## 💡 Basic Principles of Evaluation For effective evaluation: 1. ✅ **Multiple Metrics**: Comprehensive assessment of quality, performance, cost, and reliability 2. ✅ **Statistical Validation**: Confirm significance through multiple runs 3. ✅ **Consistency**: Evaluate with the same test cases under the same conditions 4. ✅ **Visualization**: Track improvements with graphs and tables 5. ✅ **Documentation**: Record evaluation results and analysis ## 🔍 Troubleshooting ### Large Variance in Evaluation Results → Check [Statistical Significance Testing](./evaluation_statistics.md#outlier-detection-and-handling) ### Evaluation Takes Too Long → Implement staged evaluation in [Best Practices](./evaluation_practices.md#troubleshooting) ### Unclear Which Metrics to Measure → Check [Evaluation Metrics Design](./evaluation_metrics.md) for purpose and use cases of each metric ### Insufficient Test Cases → Refer to coverage analysis in [Test Case Design](./evaluation_testcases.md#test-case-design-principles) ## 📋 Related Documentation - **[Prompt Optimization](./prompt_optimization.md)** - Techniques for prompt improvement - **[Examples Collection](./examples.md)** - Samples of evaluation scripts and reports - **[Workflow](./workflow.md)** - Overall fine-tuning flow including evaluation - **[SKILL.md](./SKILL.md)** - Overview of the fine-tune skill --- **💡 Tip**: For practical evaluation scripts and templates, see [examples.md](examples.md#phase-2-baseline-evaluation-examples).