259 lines
7.0 KiB
Markdown
259 lines
7.0 KiB
Markdown
---
|
|
name: skill-ollama-deepseek-ocr-tool
|
|
description: Batch OCR processing with DeepSeek-OCR via Ollama
|
|
---
|
|
|
|
# When to use
|
|
|
|
- Convert textbook/lecture images to markdown notes
|
|
- Batch OCR processing of scanned documents
|
|
- Extract text from image sequences (iPhone photos, screenshots)
|
|
- Create searchable markdown from visual content
|
|
- Process documents privately without cloud services
|
|
|
|
# ollama-deepseek-ocr-tool Skill
|
|
|
|
## Purpose
|
|
|
|
This skill provides access to `ollama-deepseek-ocr-tool`, a CLI tool for fast, private batch OCR processing using DeepSeek-OCR via Ollama. Converts sequences of images (textbook pages, slides, scans) into a single coherent markdown document.
|
|
|
|
**Key capabilities:**
|
|
- ⚡ Fast processing (~3s per image on M4)
|
|
- 🔒 Private - runs entirely locally
|
|
- 📝 Clean markdown output (tables, headings, lists)
|
|
- 🔄 Natural sorting (IMG_1 < IMG_2 < IMG_10)
|
|
- 💰 Free - no API costs or rate limits
|
|
|
|
## When to Use This Skill
|
|
|
|
**Use this skill when:**
|
|
- Converting textbook chapters to Obsidian notes
|
|
- Processing lecture slides or handouts to markdown
|
|
- Extracting text from scanned documents
|
|
- Creating searchable study materials from images
|
|
- Need comprehensive examples and troubleshooting
|
|
|
|
**Do NOT use this skill for:**
|
|
- Cloud-based OCR (this is local-only)
|
|
- Describing image content (extracts text only)
|
|
- Handwritten text recognition (printed text only)
|
|
- Real-time streaming OCR (batch processing only)
|
|
|
|
## CLI Tool: ollama-deepseek-ocr-tool
|
|
|
|
The `ollama-deepseek-ocr-tool` processes multiple images in sequence and creates a single markdown document with extracted text. Images are sorted naturally and text is appended sequentially for coherent reading.
|
|
|
|
### Installation
|
|
|
|
```bash
|
|
# Clone and install
|
|
git clone https://github.com/dnvriend/ollama-deepseek-ocr-tool.git
|
|
cd ollama-deepseek-ocr-tool
|
|
uv tool install .
|
|
```
|
|
|
|
### Prerequisites
|
|
|
|
1. **Ollama** - Local LLM runtime
|
|
```bash
|
|
brew install ollama
|
|
ollama serve
|
|
```
|
|
|
|
2. **DeepSeek-OCR model** (~6GB download)
|
|
```bash
|
|
ollama pull deepseek-ocr
|
|
```
|
|
|
|
3. **Python 3.14+** and **uv package manager**
|
|
|
|
### Quick Start
|
|
|
|
```bash
|
|
# Example 1: Process textbook chapter from iPhone photos
|
|
ollama-deepseek-ocr-tool "IMG_*.png" chapter-3-notes.md
|
|
|
|
# Example 2: Convert lecture slides to markdown
|
|
ollama-deepseek-ocr-tool "lecture-week5/*.jpg" week5-summary.md
|
|
|
|
# Example 3: With verbose logging to debug issues
|
|
ollama-deepseek-ocr-tool "*.png" output.md -vv
|
|
```
|
|
|
|
### Main Command - Batch OCR Processing
|
|
|
|
Process images matching a glob pattern and create a markdown document.
|
|
|
|
**Usage:**
|
|
```bash
|
|
ollama-deepseek-ocr-tool GLOB_PATTERN OUTPUT_FILE [OPTIONS]
|
|
```
|
|
|
|
**Arguments:**
|
|
- `GLOB_PATTERN`: Pattern to match images (e.g., "*.png", "dir/*.jpg")
|
|
- `OUTPUT_FILE`: Path to output markdown file (will be overwritten)
|
|
- `-v/-vv/-vvv`: Verbosity (INFO/DEBUG/TRACE)
|
|
- `--help`: Show comprehensive help with examples
|
|
- `--version`: Show version
|
|
|
|
**Examples:**
|
|
```bash
|
|
# Basic: Process all PNGs in current directory
|
|
ollama-deepseek-ocr-tool "*.png" output.md
|
|
|
|
# Process specific directory
|
|
ollama-deepseek-ocr-tool "textbook-ch3/*.jpg" chapter-3.md
|
|
|
|
# With verbose logging
|
|
ollama-deepseek-ocr-tool "*.png" output.md -vv
|
|
|
|
# Preview help (shows all examples)
|
|
ollama-deepseek-ocr-tool --help
|
|
```
|
|
|
|
**Output Format:**
|
|
```markdown
|
|
<!-- Source: IMG_4170.png -->
|
|
|
|
[extracted text from image 1]
|
|
|
|
---
|
|
|
|
<!-- Source: IMG_4171.png -->
|
|
|
|
[extracted text from image 2]
|
|
```
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary><strong>⚙️ Advanced Features (Click to expand)</strong></summary>
|
|
|
|
<!-- TODO: Add advanced features documentation -->
|
|
|
|
### Multi-Level Verbosity Logging
|
|
|
|
Control logging detail with progressive verbosity levels. All logs output to stderr.
|
|
|
|
**Logging Levels:**
|
|
|
|
| Flag | Level | Output | Use Case |
|
|
|------|-------|--------|----------|
|
|
| (none) | WARNING | Errors and warnings only | Production, quiet mode |
|
|
| `-v` | INFO | + High-level operations | Normal debugging |
|
|
| `-vv` | DEBUG | + Detailed info, full tracebacks | Development, troubleshooting |
|
|
| `-vvv` | TRACE | + Library internals | Deep debugging |
|
|
|
|
**Examples:**
|
|
```bash
|
|
# INFO level - see operations
|
|
ollama-deepseek-ocr-tool command -v
|
|
|
|
# DEBUG level - see detailed info
|
|
ollama-deepseek-ocr-tool command -vv
|
|
|
|
# TRACE level - see all internals
|
|
ollama-deepseek-ocr-tool command -vvv
|
|
```
|
|
|
|
---
|
|
|
|
### What Can Be Extracted
|
|
|
|
**Text & Formatting:**
|
|
- ✅ Headings (H1, H2, H3)
|
|
- ✅ Body text with bold/italic
|
|
- ✅ Bulleted and numbered lists
|
|
- ✅ Multi-column layouts
|
|
|
|
**Tables:**
|
|
- ✅ Clean markdown table format
|
|
- ✅ Headers and structure preserved
|
|
- ✅ Merged cells handled
|
|
|
|
**Diagrams & Figures:**
|
|
- ✅ Text labels extracted
|
|
- ✅ Figure captions captured
|
|
- ❌ Visual content not described
|
|
- ❌ Flowchart arrows not preserved
|
|
|
|
### Performance Characteristics
|
|
|
|
- **Speed**: ~3 seconds per image (M4 MacBook)
|
|
- **Memory**: ~6GB (DeepSeek-OCR model)
|
|
- **Throughput**: ~20 images per minute
|
|
- **Scalability**: Sequential processing (no parallel batching)
|
|
|
|
</details>
|
|
|
|
<details>
|
|
<summary><strong>🔧 Troubleshooting (Click to expand)</strong></summary>
|
|
|
|
### Common Issues
|
|
|
|
**Issue: "No files match pattern"**
|
|
```bash
|
|
# Check your glob pattern and current directory
|
|
ls *.png # Verify files exist
|
|
|
|
# Use absolute or relative paths correctly
|
|
ollama-deepseek-ocr-tool "./images/*.png" output.md
|
|
```
|
|
|
|
**Issue: "Connection refused" / "OCR extraction failed"**
|
|
```bash
|
|
# Ensure Ollama is running
|
|
ollama serve
|
|
|
|
# Verify model is installed
|
|
ollama list | grep deepseek-ocr
|
|
|
|
# Pull model if missing
|
|
ollama pull deepseek-ocr
|
|
```
|
|
|
|
**Issue: Poor quality extraction**
|
|
- Use `-vv` flag to see word counts and verify extraction
|
|
- Check image quality (resolution, clarity)
|
|
- For complex layouts, results may vary
|
|
- Tables and diagrams work best with clear text
|
|
|
|
**Issue: Slow processing**
|
|
- Expected: ~3 seconds per image on M4
|
|
- Check if Ollama is using GPU acceleration
|
|
- Sequential processing is by design (6GB model)
|
|
|
|
### Getting Help
|
|
|
|
```bash
|
|
# Show comprehensive help with examples
|
|
ollama-deepseek-ocr-tool --help
|
|
|
|
# Use verbose logging to debug
|
|
ollama-deepseek-ocr-tool "*.png" output.md -vv
|
|
```
|
|
|
|
</details>
|
|
|
|
## Exit Codes
|
|
|
|
- `0`: Success - all images processed
|
|
- `1`: Validation error - no files match pattern or invalid arguments
|
|
- `2`: Runtime error - Ollama connection failed or model not found
|
|
|
|
## Best Practices
|
|
|
|
1. **Organize images before processing**: Name files sequentially (IMG_001, IMG_002) for natural sorting
|
|
2. **Use descriptive output names**: `chapter-3-entrepreneurship.md` not `output.md`
|
|
3. **Start with small batches**: Test with 2-3 images first to verify quality
|
|
4. **Enable verbose logging for debugging**: Use `-vv` to see extraction progress and word counts
|
|
5. **Review output after processing**: OCR may miss formatting or misread complex layouts
|
|
6. **Keep images at good resolution**: Higher quality = better extraction
|
|
7. **Process similar content together**: Keep textbook pages separate from diagrams
|
|
|
|
## Resources
|
|
|
|
- **GitHub**: https://github.com/dnvriend/ollama-deepseek-ocr-tool
|
|
- **Python Package Index**: https://pypi.org/project/ollama-deepseek-ocr-tool/
|
|
- **Documentation**: <!-- TODO: Add documentation URL if available -->
|