7.0 KiB
name, description
| name | description |
|---|---|
| skill-ollama-deepseek-ocr-tool | Batch OCR processing with DeepSeek-OCR via Ollama |
When to use
- Convert textbook/lecture images to markdown notes
- Batch OCR processing of scanned documents
- Extract text from image sequences (iPhone photos, screenshots)
- Create searchable markdown from visual content
- Process documents privately without cloud services
ollama-deepseek-ocr-tool Skill
Purpose
This skill provides access to ollama-deepseek-ocr-tool, a CLI tool for fast, private batch OCR processing using DeepSeek-OCR via Ollama. Converts sequences of images (textbook pages, slides, scans) into a single coherent markdown document.
Key capabilities:
- ⚡ Fast processing (~3s per image on M4)
- 🔒 Private - runs entirely locally
- 📝 Clean markdown output (tables, headings, lists)
- 🔄 Natural sorting (IMG_1 < IMG_2 < IMG_10)
- 💰 Free - no API costs or rate limits
When to Use This Skill
Use this skill when:
- Converting textbook chapters to Obsidian notes
- Processing lecture slides or handouts to markdown
- Extracting text from scanned documents
- Creating searchable study materials from images
- Need comprehensive examples and troubleshooting
Do NOT use this skill for:
- Cloud-based OCR (this is local-only)
- Describing image content (extracts text only)
- Handwritten text recognition (printed text only)
- Real-time streaming OCR (batch processing only)
CLI Tool: ollama-deepseek-ocr-tool
The ollama-deepseek-ocr-tool processes multiple images in sequence and creates a single markdown document with extracted text. Images are sorted naturally and text is appended sequentially for coherent reading.
Installation
# Clone and install
git clone https://github.com/dnvriend/ollama-deepseek-ocr-tool.git
cd ollama-deepseek-ocr-tool
uv tool install .
Prerequisites
-
Ollama - Local LLM runtime
brew install ollama ollama serve -
DeepSeek-OCR model (~6GB download)
ollama pull deepseek-ocr -
Python 3.14+ and uv package manager
Quick Start
# Example 1: Process textbook chapter from iPhone photos
ollama-deepseek-ocr-tool "IMG_*.png" chapter-3-notes.md
# Example 2: Convert lecture slides to markdown
ollama-deepseek-ocr-tool "lecture-week5/*.jpg" week5-summary.md
# Example 3: With verbose logging to debug issues
ollama-deepseek-ocr-tool "*.png" output.md -vv
Main Command - Batch OCR Processing
Process images matching a glob pattern and create a markdown document.
Usage:
ollama-deepseek-ocr-tool GLOB_PATTERN OUTPUT_FILE [OPTIONS]
Arguments:
GLOB_PATTERN: Pattern to match images (e.g., ".png", "dir/.jpg")OUTPUT_FILE: Path to output markdown file (will be overwritten)-v/-vv/-vvv: Verbosity (INFO/DEBUG/TRACE)--help: Show comprehensive help with examples--version: Show version
Examples:
# Basic: Process all PNGs in current directory
ollama-deepseek-ocr-tool "*.png" output.md
# Process specific directory
ollama-deepseek-ocr-tool "textbook-ch3/*.jpg" chapter-3.md
# With verbose logging
ollama-deepseek-ocr-tool "*.png" output.md -vv
# Preview help (shows all examples)
ollama-deepseek-ocr-tool --help
Output Format:
<!-- Source: IMG_4170.png -->
[extracted text from image 1]
---
<!-- Source: IMG_4171.png -->
[extracted text from image 2]
⚙️ Advanced Features (Click to expand)
Multi-Level Verbosity Logging
Control logging detail with progressive verbosity levels. All logs output to stderr.
Logging Levels:
| Flag | Level | Output | Use Case |
|---|---|---|---|
| (none) | WARNING | Errors and warnings only | Production, quiet mode |
-v |
INFO | + High-level operations | Normal debugging |
-vv |
DEBUG | + Detailed info, full tracebacks | Development, troubleshooting |
-vvv |
TRACE | + Library internals | Deep debugging |
Examples:
# INFO level - see operations
ollama-deepseek-ocr-tool command -v
# DEBUG level - see detailed info
ollama-deepseek-ocr-tool command -vv
# TRACE level - see all internals
ollama-deepseek-ocr-tool command -vvv
What Can Be Extracted
Text & Formatting:
- ✅ Headings (H1, H2, H3)
- ✅ Body text with bold/italic
- ✅ Bulleted and numbered lists
- ✅ Multi-column layouts
Tables:
- ✅ Clean markdown table format
- ✅ Headers and structure preserved
- ✅ Merged cells handled
Diagrams & Figures:
- ✅ Text labels extracted
- ✅ Figure captions captured
- ❌ Visual content not described
- ❌ Flowchart arrows not preserved
Performance Characteristics
- Speed: ~3 seconds per image (M4 MacBook)
- Memory: ~6GB (DeepSeek-OCR model)
- Throughput: ~20 images per minute
- Scalability: Sequential processing (no parallel batching)
🔧 Troubleshooting (Click to expand)
Common Issues
Issue: "No files match pattern"
# Check your glob pattern and current directory
ls *.png # Verify files exist
# Use absolute or relative paths correctly
ollama-deepseek-ocr-tool "./images/*.png" output.md
Issue: "Connection refused" / "OCR extraction failed"
# Ensure Ollama is running
ollama serve
# Verify model is installed
ollama list | grep deepseek-ocr
# Pull model if missing
ollama pull deepseek-ocr
Issue: Poor quality extraction
- Use
-vvflag to see word counts and verify extraction - Check image quality (resolution, clarity)
- For complex layouts, results may vary
- Tables and diagrams work best with clear text
Issue: Slow processing
- Expected: ~3 seconds per image on M4
- Check if Ollama is using GPU acceleration
- Sequential processing is by design (6GB model)
Getting Help
# Show comprehensive help with examples
ollama-deepseek-ocr-tool --help
# Use verbose logging to debug
ollama-deepseek-ocr-tool "*.png" output.md -vv
Exit Codes
0: Success - all images processed1: Validation error - no files match pattern or invalid arguments2: Runtime error - Ollama connection failed or model not found
Best Practices
- Organize images before processing: Name files sequentially (IMG_001, IMG_002) for natural sorting
- Use descriptive output names:
chapter-3-entrepreneurship.mdnotoutput.md - Start with small batches: Test with 2-3 images first to verify quality
- Enable verbose logging for debugging: Use
-vvto see extraction progress and word counts - Review output after processing: OCR may miss formatting or misread complex layouts
- Keep images at good resolution: Higher quality = better extraction
- Process similar content together: Keep textbook pages separate from diagrams
Resources
- GitHub: https://github.com/dnvriend/ollama-deepseek-ocr-tool
- Python Package Index: https://pypi.org/project/ollama-deepseek-ocr-tool/
- Documentation: