Files
gh-yaleh-meta-cc-claude/skills/subagent-prompt-construction/reference/patterns.md
2025-11-30 09:07:22 +08:00

5.7 KiB

Subagent Prompt Patterns

Core patterns for constructing Claude Code subagent prompts.


Pattern 1: Orchestration Agent

Use case: Coordinate multiple subagents for complex workflows

Structure:

orchestrate :: Task → Result
orchestrate(task) =
  plan = agent(planner, task.spec) →
  ∀stage ∈ plan.stages:
    result = agent(executor, stage) →
    validate(result) →
  aggregate(results)

Example: phase-planner-executor

  • Coordinates project-planner and stage-executor
  • Sequential stage execution with validation
  • Error detection and recovery
  • Progress tracking

When to use:

  • Multi-step workflows requiring planning
  • Need to coordinate 2+ specialized agents
  • Sequential stages with dependencies
  • Error handling between stages critical

Complexity: Moderate to Complex (60-150 lines)


Pattern 2: Analysis Agent

Use case: Analyze data via MCP tools and generate insights

Structure:

analyze :: Query → Report
analyze(query) =
  data = mcp::query_tool(query.params) →
  patterns = extract_patterns(data) →
  insights = generate_insights(patterns) →
  report(patterns, insights)

Example: error-analyzer (hypothetical)

  • Query tool errors via MCP
  • Categorize error patterns
  • Suggest fixes
  • Generate analysis report

When to use:

  • Need to query session data
  • Pattern extraction from data
  • Insight generation from analysis
  • Reporting on historical data

Complexity: Simple to Moderate (30-90 lines)


Pattern 3: Enhancement Agent

Use case: Apply skill guidelines to improve artifacts

Structure:

enhance :: Artifact → ImprovedArtifact
enhance(artifact) =
  guidelines = skill(domain-skill) →
  analysis = analyze(artifact, guidelines) →
  improvements = generate(analysis) →
  apply(improvements, artifact)

Example: code-refactorer (hypothetical)

  • Load refactoring skill guidelines
  • Analyze code against guidelines
  • Generate improvement suggestions
  • Apply or report improvements

When to use:

  • Systematic artifact improvement
  • Apply established skill patterns
  • Need consistent quality standards
  • Repeatable enhancement process

Complexity: Moderate (60-120 lines)


Pattern 4: Validation Agent

Use case: Validate artifacts against criteria

Structure:

validate :: Artifact → ValidationReport
validate(artifact) =
  criteria = load_criteria() →
  results = check_all(artifact, criteria) →
  report(passes, failures, warnings)

Example: quality-checker (hypothetical)

  • Load quality criteria
  • Check code standards, tests, coverage
  • Generate pass/fail report
  • Provide remediation suggestions

When to use:

  • Pre-commit checks
  • Quality gates
  • Compliance validation
  • Systematic artifact verification

Complexity: Simple to Moderate (30-90 lines)


Pattern Selection Guide

Need Pattern Complexity Integration
Coordinate agents Orchestration High 2+ agents
Query & analyze data Analysis Medium MCP tools
Improve artifacts Enhancement Medium Skills
Check compliance Validation Low Skills optional
Multi-step workflow Orchestration High Agents + MCP
One-step analysis Analysis Low MCP only

Common Anti-Patterns

Flat Structure (No Decomposition)

# Bad - 100 lines of inline logic
λ(input) → output | step1 ∧ step2 ∧ ... ∧ step50

Fix: Decompose into 5-10 functions

Verbose Natural Language

# Bad
"First, we need to validate the input. Then, we should..."

Fix: Use symbolic logic and function composition

Missing Dependencies

# Bad - calls agents without declaring
agent(mystery-agent, ...) → result

Fix: Explicit dependencies section

Unclear Constraints

# Bad - vague requirements
"Make sure code quality is good"

Fix: Explicit predicates (coverage ≥ 0.80)


Pattern Composition

Patterns can be composed for complex workflows:

Orchestration + Analysis:

orchestrate(task) =
  plan = agent(planner, task) →
  ∀stage ∈ plan.stages:
    result = agent(executor, stage) →
    if result.status == "error" then
      analysis = analyze_errors(result) → # Analysis pattern
      return (partial_results, analysis)
  aggregate(results)

Enhancement + Validation:

enhance(artifact) =
  improved = apply_skill(artifact) →
  validation = validate(improved) → # Validation pattern
  if validation.passes then improved else retry(validation.issues)

Quality Metrics

Compactness

  • Simple: ≤60 lines (score ≥0.60)
  • Moderate: ≤90 lines (score ≥0.40)
  • Complex: ≤150 lines (score ≥0.00)

Formula: 1 - (lines / 150)

Integration

  • High: 3+ features (score ≥0.75)
  • Moderate: 2 features (score ≥0.50)
  • Low: 1 feature (score ≥0.25)

Formula: features_used / applicable_features

Clarity

  • Clear structure (0-1 subjective)
  • Obvious flow (0-1 subjective)
  • Self-documenting (0-1 subjective)

Target: All ≥0.80


Validation Checklist

Before using a pattern:

  • Pattern matches use case
  • Complexity appropriate (simple/moderate/complex)
  • Dependencies identified
  • Function count: 3-12
  • Line count: ≤150
  • Integration score: ≥0.50
  • Constraints explicit
  • Example reviewed

  • Integration Patterns: integration-patterns.md (agent/MCP/skill syntax)
  • Symbolic Language: symbolic-language.md (operators, quantifiers)
  • Template: ../templates/subagent-template.md (reusable structure)
  • Examples: ../examples/phase-planner-executor.md (orchestration)
  • Case Studies: case-studies/phase-planner-executor-analysis.md (detailed)