372 lines
8.6 KiB
Markdown
372 lines
8.6 KiB
Markdown
# Convergence Prediction Examples
|
||
|
||
**Purpose**: Worked examples of prediction model across different scenarios
|
||
**Model Accuracy**: 85% (±1 iteration) across 13 experiments
|
||
|
||
---
|
||
|
||
## Example 1: Error Recovery (Actual: 3 iterations)
|
||
|
||
### Assessment
|
||
|
||
**Domain**: Error detection, diagnosis, recovery, prevention for meta-cc
|
||
|
||
**Data Available**:
|
||
- 1,336 historical errors in session logs
|
||
- Frequency distribution calculable
|
||
- Error rate: 5.78%
|
||
|
||
**Prior Art**:
|
||
- Industry error taxonomies (5 patterns borrowable)
|
||
- Standard recovery workflows
|
||
|
||
**Automation**:
|
||
- Top 3 obvious from frequency analysis
|
||
- File operations (high frequency, high ROI)
|
||
|
||
### Prediction
|
||
|
||
```
|
||
Base: 4
|
||
|
||
Criterion 1 - V_meta(s₀):
|
||
- Completeness: 10/13 = 0.77
|
||
- Transferability: 5/10 = 0.50
|
||
- Automation: 3/3 = 1.0
|
||
- V_meta(s₀) = 0.758 ≥ 0.40? YES → +0 ✅
|
||
|
||
Criterion 2 - Domain Scope:
|
||
- "Error detection, diagnosis, recovery, prevention"
|
||
- <3 sentences? YES → +0 ✅
|
||
|
||
Criterion 3 - Validation:
|
||
- Retrospective with 1,336 errors
|
||
- Direct? YES → +0 ✅
|
||
|
||
Criterion 4 - Specialization:
|
||
- Generic data-analyst, doc-writer, coder sufficient
|
||
- Needed? NO → +0 ✅
|
||
|
||
Criterion 5 - Automation:
|
||
- Top 3 identified from frequency analysis
|
||
- Clear? YES → +0 ✅
|
||
|
||
Predicted: 4 + 0 = 4 iterations
|
||
Actual: 3 iterations ✅
|
||
Accuracy: Within ±1 ✅
|
||
```
|
||
|
||
---
|
||
|
||
## Example 2: Test Strategy (Actual: 6 iterations)
|
||
|
||
### Assessment
|
||
|
||
**Domain**: Develop test strategy for Go CLI project
|
||
|
||
**Data Available**:
|
||
- Coverage: 72.1%
|
||
- Test count: 590
|
||
- No documented patterns
|
||
|
||
**Prior Art**:
|
||
- Industry test patterns exist (table-driven, fixtures)
|
||
- Could borrow 50-70%
|
||
|
||
**Automation**:
|
||
- Coverage analysis tools (obvious)
|
||
- Test generation (feasible)
|
||
|
||
### Prediction
|
||
|
||
```
|
||
Base: 4
|
||
|
||
Criterion 1 - V_meta(s₀):
|
||
- Completeness: 0/8 = 0.00 (no patterns)
|
||
- Transferability: 0/8 = 0.00 (no research done)
|
||
- Automation: 0/3 = 0.00 (not identified)
|
||
- V_meta(s₀) = 0.00 < 0.40? YES → +2 ❌
|
||
|
||
Criterion 2 - Domain Scope:
|
||
- "Develop test strategy" (vague)
|
||
- What tests? How much coverage?
|
||
- Fuzzy? YES → +1 ❌
|
||
|
||
Criterion 3 - Validation:
|
||
- Multi-context needed (3 archetypes)
|
||
- Direct? NO → +2 ❌
|
||
|
||
Criterion 4 - Specialization:
|
||
- coverage-analyzer: 30x speedup
|
||
- test-generator: 10x speedup
|
||
- Needed? YES → +1 ❌
|
||
|
||
Criterion 5 - Automation:
|
||
- Coverage tools obvious
|
||
- Clear? YES → +0 ✅
|
||
|
||
Predicted: 4 + 2 + 1 + 2 + 1 + 0 = 10 iterations
|
||
Actual: 6 iterations ⚠️
|
||
Accuracy: -4 (model conservative)
|
||
```
|
||
|
||
**Analysis**: Model over-predicted, but signaled "not rapid" correctly.
|
||
|
||
---
|
||
|
||
## Example 3: CI/CD Optimization (Hypothetical)
|
||
|
||
### Assessment
|
||
|
||
**Domain**: Reduce build time through caching, parallelization, optimization
|
||
|
||
**Data Available**:
|
||
- CI logs for last 3 months
|
||
- Build times: avg 8 min (range: 6-12 min)
|
||
- Failure rate: 25%
|
||
|
||
**Prior Art**:
|
||
- Industry CI/CD patterns well-documented
|
||
- GitHub Actions best practices (7 patterns)
|
||
|
||
**Automation**:
|
||
- Pipeline analysis (parse CI logs)
|
||
- Config generator (template-based)
|
||
|
||
### Prediction
|
||
|
||
```
|
||
Base: 4
|
||
|
||
Criterion 1 - V_meta(s₀):
|
||
Estimate:
|
||
- Analyze CI logs: identify 5 patterns initially
|
||
- Expected final: 7 patterns
|
||
- Completeness: 5/7 = 0.71
|
||
- Borrow 3 industry patterns: 3/7 = 0.43
|
||
- Automation: 2 tools identified = 2/2 = 1.0
|
||
- V_meta(s₀) = 0.4×0.71 + 0.3×0.43 + 0.3×1.0 = 0.61 ≥ 0.40? YES → +0 ✅
|
||
|
||
Criterion 2 - Domain Scope:
|
||
- "Reduce CI/CD build time through caching, parallelization, optimization"
|
||
- Clear? YES → +0 ✅
|
||
|
||
Criterion 3 - Validation:
|
||
- Test on own pipeline (single context)
|
||
- Direct? YES → +0 ✅
|
||
|
||
Criterion 4 - Specialization:
|
||
- Pipeline analysis: bash/jq sufficient
|
||
- Config generation: template-based (generic)
|
||
- Needed? NO → +0 ✅
|
||
|
||
Criterion 5 - Automation:
|
||
- Caching, parallelization, fast-fail (top 3 obvious)
|
||
- Clear? YES → +0 ✅
|
||
|
||
Predicted: 4 + 0 = 4 iterations (rapid convergence)
|
||
Expected actual: 3-5 iterations
|
||
Confidence: High (all criteria met)
|
||
```
|
||
|
||
---
|
||
|
||
## Example 4: Security Audit Methodology (Hypothetical)
|
||
|
||
### Assessment
|
||
|
||
**Domain**: Systematic security audit for web applications
|
||
|
||
**Data Available**:
|
||
- Limited (1-2 past audits)
|
||
- No quantitative metrics
|
||
|
||
**Prior Art**:
|
||
- OWASP Top 10, industry checklists
|
||
- High transferability (70-80%)
|
||
|
||
**Automation**:
|
||
- Static analysis tools
|
||
- Fuzzy (requires domain expertise to identify)
|
||
|
||
### Prediction
|
||
|
||
```
|
||
Base: 4
|
||
|
||
Criterion 1 - V_meta(s₀):
|
||
Estimate:
|
||
- Limited data, initial patterns: ~3
|
||
- Expected final: ~12 (security domains)
|
||
- Completeness: 3/12 = 0.25
|
||
- Borrow OWASP/industry: 9/12 = 0.75
|
||
- Automation: unclear (tools exist but need selection)
|
||
- V_meta(s₀) = 0.4×0.25 + 0.3×0.75 + 0.3×0.30 = 0.42 ≥ 0.40? YES → +0 ✅
|
||
|
||
Criterion 2 - Domain Scope:
|
||
- "Systematic security audit for web applications"
|
||
- But: which vulnerabilities? what depth?
|
||
- Fuzzy? YES → +1 ❌
|
||
|
||
Criterion 3 - Validation:
|
||
- Multi-context (need to test on multiple apps)
|
||
- Different tech stacks
|
||
- Direct? NO → +2 ❌
|
||
|
||
Criterion 4 - Specialization:
|
||
- Security-focused agents valuable
|
||
- Domain expertise needed
|
||
- Needed? YES → +1 ❌
|
||
|
||
Criterion 5 - Automation:
|
||
- Static analysis obvious
|
||
- But: which tools? how to integrate?
|
||
- Somewhat clear? PARTIAL → +0.5 ≈ +1 ❌
|
||
|
||
Predicted: 4 + 0 + 1 + 2 + 1 + 1 = 9 iterations
|
||
Expected actual: 7-10 iterations (exploratory)
|
||
Confidence: Medium (borderline V_meta(s₀), multiple penalties)
|
||
```
|
||
|
||
---
|
||
|
||
## Example 5: Documentation Management (Hypothetical)
|
||
|
||
### Assessment
|
||
|
||
**Domain**: Documentation quality and consistency for large codebase
|
||
|
||
**Data Available**:
|
||
- Existing docs: 150 files
|
||
- Quality issues logged: 80 items
|
||
- No systematic approach
|
||
|
||
**Prior Art**:
|
||
- Documentation standards (Google, Microsoft style guides)
|
||
- High transferability
|
||
|
||
**Automation**:
|
||
- Linters (markdownlint, prose)
|
||
- Doc generators
|
||
|
||
### Prediction
|
||
|
||
```
|
||
Base: 4
|
||
|
||
Criterion 1 - V_meta(s₀):
|
||
Estimate:
|
||
- Analyze 80 quality issues: 8 categories
|
||
- Expected final: 10 categories
|
||
- Completeness: 8/10 = 0.80
|
||
- Borrow style guide patterns: 7/10 = 0.70
|
||
- Automation: linters + generators = 3/3 = 1.0
|
||
- V_meta(s₀) = 0.4×0.80 + 0.3×0.70 + 0.3×1.0 = 0.83 ≥ 0.40? YES → +0 ✅✅
|
||
|
||
Criterion 2 - Domain Scope:
|
||
- "Documentation quality and consistency for codebase"
|
||
- Clear quality metrics (completeness, accuracy, style)
|
||
- Clear? YES → +0 ✅
|
||
|
||
Criterion 3 - Validation:
|
||
- Retrospective on 150 existing docs
|
||
- Direct? YES → +0 ✅
|
||
|
||
Criterion 4 - Specialization:
|
||
- Generic doc-writer + linters sufficient
|
||
- Needed? NO → +0 ✅
|
||
|
||
Criterion 5 - Automation:
|
||
- Linters, generators, templates (obvious)
|
||
- Clear? YES → +0 ✅
|
||
|
||
Predicted: 4 + 0 = 4 iterations (rapid convergence)
|
||
Expected actual: 3-4 iterations
|
||
Confidence: Very High (strong V_meta(s₀), all criteria met)
|
||
```
|
||
|
||
---
|
||
|
||
## Summary Table
|
||
|
||
| Example | V_meta(s₀) | Penalties | Predicted | Actual | Accuracy |
|
||
|---------|------------|-----------|-----------|--------|----------|
|
||
| Error Recovery | 0.758 | 0 | 4 | 3 | ✅ ±1 |
|
||
| Test Strategy | 0.00 | 5 | 10 | 6 | ⚠️ -4 (conservative) |
|
||
| CI/CD Opt. | 0.61 | 0 | 4 | (3-5 expected) | TBD |
|
||
| Security Audit | 0.42 | 4 | 9 | (7-10 expected) | TBD |
|
||
| Doc Management | 0.83 | 0 | 4 | (3-4 expected) | TBD |
|
||
|
||
---
|
||
|
||
## Pattern Recognition
|
||
|
||
### Rapid Convergence Profile (4-5 iterations)
|
||
|
||
**Characteristics**:
|
||
- V_meta(s₀) ≥ 0.50 (strong baseline)
|
||
- 0-1 penalties total
|
||
- Clear domain scope
|
||
- Direct/retrospective validation
|
||
- Obvious automation opportunities
|
||
|
||
**Examples**: Error Recovery, CI/CD Opt., Doc Management
|
||
|
||
---
|
||
|
||
### Standard Convergence Profile (6-8 iterations)
|
||
|
||
**Characteristics**:
|
||
- V_meta(s₀) = 0.20-0.40 (weak baseline)
|
||
- 2-4 penalties total
|
||
- Some scoping needed
|
||
- Multi-context validation OR specialization needed
|
||
|
||
**Examples**: Test Strategy (6 actual)
|
||
|
||
---
|
||
|
||
### Exploratory Profile (9+ iterations)
|
||
|
||
**Characteristics**:
|
||
- V_meta(s₀) < 0.20 (no baseline)
|
||
- 5+ penalties total
|
||
- Fuzzy scope
|
||
- Multi-context validation AND specialization needed
|
||
- Unclear automation
|
||
|
||
**Examples**: Security Audit (hypothetical)
|
||
|
||
---
|
||
|
||
## Using Predictions
|
||
|
||
### High Confidence (0-1 penalties)
|
||
|
||
**Action**: Invest in strong iteration 0 (3-5 hours)
|
||
**Expected**: Rapid convergence (3-5 iterations, 10-15 hours)
|
||
**Strategy**: Comprehensive baseline, aggressive iteration 1
|
||
|
||
---
|
||
|
||
### Medium Confidence (2-4 penalties)
|
||
|
||
**Action**: Standard iteration 0 (1-2 hours)
|
||
**Expected**: Standard convergence (6-8 iterations, 20-30 hours)
|
||
**Strategy**: Incremental improvements, focus on high-value
|
||
|
||
---
|
||
|
||
### Low Confidence (5+ penalties)
|
||
|
||
**Action**: Minimal iteration 0 (<1 hour)
|
||
**Expected**: Exploratory (9+ iterations, 30-50 hours)
|
||
**Strategy**: Discovery-driven, establish baseline first
|
||
|
||
---
|
||
|
||
**Source**: BAIME Rapid Convergence Prediction Model
|
||
**Accuracy**: 85% (±1 iteration) on 13 experiments
|
||
**Purpose**: Planning tool for experiment design
|