Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 09:07:22 +08:00
commit fab98d059b
179 changed files with 46209 additions and 0 deletions

View File

@@ -0,0 +1,133 @@
# Baseline Quality Assessment Components
**Purpose**: V_meta(s₀) calculation components for strong iteration 0
**Target**: V_meta(s₀) ≥ 0.40 for rapid convergence
---
## Formula
```
V_meta(s₀) = 0.4 × completeness +
0.3 × transferability +
0.3 × automation_effectiveness
```
---
## Component 1: Completeness (40%)
**Definition**: Initial pattern/taxonomy coverage
**Calculation**:
```
completeness = initial_items / estimated_final_items
```
**Achieve ≥0.50**:
- Analyze ALL available data (3-5 hours)
- Create 10-15 initial categories/patterns
- Classify ≥70% of observed cases
**Example (Error Recovery)**:
```
Initial: 10 categories (1,056/1,336 = 79.1% coverage)
Estimated final: 12-13 categories
Completeness: 10/12.5 = 0.80
Contribution: 0.4 × 0.80 = 0.32
```
---
## Component 2: Transferability (30%)
**Definition**: Reusable patterns from prior art
**Calculation**:
```
transferability = borrowed_patterns / total_patterns_needed
```
**Achieve ≥0.30**:
- Research similar methodologies (1-2 hours)
- Identify industry standards
- Document borrowable patterns (≥30%)
**Example (Error Recovery)**:
```
Borrowed: 5 industry error patterns
Total needed: ~10
Transferability: 5/10 = 0.50
Contribution: 0.3 × 0.50 = 0.15
```
---
## Component 3: Automation (30%)
**Definition**: Early identification of high-ROI automation
**Calculation**:
```
automation_effectiveness = identified_tools / expected_tools
```
**Achieve ≥0.30**:
- Frequency analysis (1 hour)
- Identify top 3-5 automation candidates
- Estimate ROI (≥5x)
**Example (Error Recovery)**:
```
Identified: 3 tools (all with >20x ROI)
Expected final: 3 tools
Automation: 3/3 = 1.0
Contribution: 0.3 × 1.0 = 0.30
```
---
## Quality Levels
### Excellent (V_meta ≥ 0.60)
**Achieves**:
- Completeness: ≥0.70
- Transferability: ≥0.60
- Automation: ≥0.70
**Effort**: 6-10 hours
**Outcome**: 3-4 iterations
### Good (V_meta = 0.40-0.59)
**Achieves**:
- Completeness: ≥0.50
- Transferability: ≥0.30
- Automation: ≥0.30
**Effort**: 4-6 hours
**Outcome**: 4-5 iterations
### Fair (V_meta = 0.20-0.39)
**Achieves**:
- Completeness: 0.30-0.50
- Transferability: 0.20-0.30
- Automation: 0.20-0.30
**Effort**: 2-4 hours
**Outcome**: 5-7 iterations
### Poor (V_meta < 0.20)
**Indicates**:
- Minimal baseline work
- Exploratory phase needed
**Effort**: <2 hours
**Outcome**: 7-10 iterations
---
**Source**: BAIME Baseline Quality Assessment

View File

@@ -0,0 +1,61 @@
# Baseline Quality Levels
**V_meta(s₀) thresholds and expected outcomes**
---
## Level 1: Excellent (0.60-1.0)
**Characteristics**:
- Comprehensive data analysis (ALL available data)
- 70-80% initial coverage
- Significant prior art borrowed (≥60%)
- All automation identified upfront
**Investment**: 6-10 hours
**Outcome**: 3-4 iterations (rapid convergence)
**Examples**: Bootstrap-003 (V_meta=0.758)
---
## Level 2: Good (0.40-0.59)
**Characteristics**:
- Thorough analysis (≥80% of data)
- 50-70% initial coverage
- Moderate borrowing (30-60%)
- Top 3 automations identified
**Investment**: 4-6 hours
**Outcome**: 4-5 iterations
**ROI**: 2-3x (saves 8-12 hours overall)
---
## Level 3: Fair (0.20-0.39)
**Characteristics**:
- Partial analysis (50-80% of data)
- 30-50% initial coverage
- Limited borrowing (<30%)
- 1-2 automations identified
**Investment**: 2-4 hours
**Outcome**: 5-7 iterations (standard)
---
## Level 4: Poor (<0.20)
**Characteristics**:
- Minimal analysis (<50% of data)
- <30% coverage
- Little/no prior art research
- Unclear automation
**Investment**: <2 hours
**Outcome**: 7-10 iterations (exploratory)
---
**Recommendation**: Target Level 2 (≥0.40) minimum for quality convergence.

View File

@@ -0,0 +1,55 @@
# Baseline Investment ROI
**Investment in strong baseline vs time saved**
---
## ROI Formula
```
ROI = time_saved / baseline_investment
Where:
- time_saved = (standard_iterations - actual_iterations) × avg_iteration_time
- baseline_investment = (iteration_0_time - minimal_baseline_time)
```
---
## Examples
### Bootstrap-003 (High ROI)
```
Baseline investment: 120 min (vs 60 min minimal) = +60 min
Iterations saved: 6 - 3 = 3 iterations
Time per iteration: ~3 hours
Time saved: 3 × 3h = 9 hours = 540 min
ROI = 540 min / 60 min = 9x
```
### Bootstrap-002 (Low Investment)
```
Baseline investment: 60 min (minimal)
Result: 6 iterations (standard)
No time saved (baseline approach)
ROI = 0x (but no risk either)
```
---
## Investment Levels
| Investment | V_meta(s₀) | Iterations | Time Saved | ROI |
|------------|------------|------------|------------|-----|
| 8-10h | 0.70-0.80 | 3 | 15-20h | 2-3x |
| 6-8h | 0.50-0.70 | 3-4 | 12-18h | 2-3x |
| 4-6h | 0.40-0.50 | 4-5 | 8-12h | 2-2.5x |
| 2-4h | 0.20-0.40 | 5-7 | 0-4h | 0-1x |
| <2h | <0.20 | 7-10 | N/A | N/A |
---
**Recommendation**: Invest 4-6 hours for V_meta(s₀) = 0.40-0.50 (2-3x ROI).