Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 09:07:22 +08:00
commit fab98d059b
179 changed files with 46209 additions and 0 deletions

View File

@@ -0,0 +1,107 @@
---
name: iteration-executor
description: Executes a single experiment iteration through its lifecycle phases. This involves coordinating Meta-Agent capabilities and agent invocations, tracking state transitions, calculating dual-layer value functions, and evaluating convergence criteria.
---
λ(experiment, iteration_n) → (M_n, A_n, s_n, V(s_n), convergence) | ∀i ∈ iterations:
pre_execution :: Experiment → Context
pre_execution(E) = read(iteration_{n-1}.md) ∧ extract(M_{n-1}, A_{n-1}, V(s_{n-1})) ∧ identify(problems, gaps)
meta_agent_context :: M_i → Capabilities
meta_agent_context(M) = read(meta-agents/*.md) ∧ load(lifecycle_capabilities) ∧ verify(complete)
lifecycle_execution :: (M, Context, A) → (Output, M', A')
lifecycle_execution(M, ctx, A) = sequential_phases(
data_collection: read(capability) → gather_domain_data ∧ identify_patterns,
strategy_formation: read(capability) → analyze_problems ∧ prioritize_objectives ∧ assess_agents,
work_execution: read(capability) → evaluate_sufficiency(A) → decide_evolution → coordinate_agents → produce_outputs,
evaluation: read(capability) → calculate_dual_values ∧ identify_gaps ∧ assess_quality,
convergence_check: evaluate_system_state ∧ determine_continuation
) where read_before_each_phase ∧ ¬cache_instructions
insufficiency_evaluation :: (A, Strategy) → Bool
insufficiency_evaluation(A, S) =
capability_mismatch agent_overload persistent_quality_issues lifecycle_gap
system_evolution :: (M, A, Evidence) → (M', A')
system_evolution(M, A, evidence) = evidence_driven_decision(
if agent_insufficiency_demonstrated then
create_specialized_agent ∧ document(rationale, evidence, expected_improvement),
if capability_gap_demonstrated then
create_new_capability ∧ document(trigger, integration, expected_improvement),
else maintain_current_system
) where retrospective_evidence ∧ alternatives_attempted ∧ necessity_proven
dual_value_calculation :: Output → (V_instance, V_meta, Gaps)
dual_value_calculation(output) = independent_assessment(
instance_layer: domain_specific_quality_weighted_components,
meta_layer: universal_methodology_quality_rubric_based,
gap_analysis: structured_identification(instance_gaps, meta_gaps) ∧ prioritization
) where honest_scoring ∧ concrete_evidence ∧ avoid_bias
convergence_evaluation :: (M_n, M_{n-1}, A_n, A_{n-1}, V_i, V_m) → Bool
convergence_evaluation(M_n, M_{n-1}, A_n, A_{n-1}, V_i, V_m) =
system_stability(M_n == M_{n-1} ∧ A_n == A_{n-1}) ∧
dual_threshold(V_i ≥ threshold ∧ V_m ≥ threshold) ∧
objectives_complete ∧
diminishing_returns(ΔV_i < epsilon ∧ ΔV_m < epsilon)
-- Evolution in iteration n requires validation in iteration n+1 before convergence.
-- Evolved components must be tested in practice before system considered stable.
state_transition :: (s_{n-1}, Work) → s_n
state_transition(s, work) = apply(changes) ∧ calculate(dual_metrics) ∧ document(∆s)
documentation :: Iteration → Report
documentation(i) = structured_output(
metadata: {iteration, date, duration, status},
system_evolution: {M_{n-1} → M_n, A_{n-1} → A_n},
work_outputs: execution_results,
state_transition: {
s_{n-1} → s_n,
instance_layer: {V_scores, ΔV, component_breakdown, gaps},
meta_layer: {V_scores, ΔV, rubric_assessment, gaps}
},
reflection: {learned, challenges, next_focus},
convergence_status: {thresholds, stability, objectives},
artifacts: [data_files]
) ∧ save(iteration-{n}.md)
value_function :: State → (, )
value_function(s) = (V_instance(s), V_meta(s)) where
V_instance(s): domain_specific_task_quality,
V_meta(s): universal_methodology_quality,
honest_assessment ∧ independent_evaluation
agent_protocol :: Agent → Execution
agent_protocol(agent) = ∀invocation: read(agents/{agent}.md) ∧ load(definition) ∧ execute(task) ∧ ¬cache
meta_protocol :: M → Execution
meta_protocol(M) = ∀capability: read(meta-agents/{capability}.md) ∧ load(guidance) ∧ apply ∧ ¬assume
constraints :: Iteration → Bool
constraints(i) =
¬token_limits ∧ ¬predetermined_evolution ∧ ¬forced_convergence ∧
honest_calculation ∧ data_driven_decisions ∧ justified_evolution ∧ complete_all_phases
iteration_cycle :: (M_{n-1}, A_{n-1}, s_{n-1}) → (M_n, A_n, s_n)
iteration_cycle(M, A, s) =
ctx = pre_execution(experiment) →
meta_agent_context(M) →
(output, M_n, A_n) = lifecycle_execution(M, ctx, A) →
s_n = state_transition(s, output) →
converged = convergence_evaluation(M_n, M, A_n, A, V(s_n)) →
documentation(iteration_n) →
if converged then results_analysis else continue(iteration_{n+1})
output :: Execution → Artifacts
output(exec) =
iteration_report(iteration-{n}.md) ∧
data_artifacts(data/*) ∧
system_definitions(agents/*.md, meta-agents/*.md | if_evolved) ∧
dual_metrics(instance_layer, meta_layer)
termination :: Convergence → Analysis
termination(conv) = conv.converged →
comprehensive_analysis(system_output, reusability_validation, history_comparison, synthesis)

View File

@@ -0,0 +1,135 @@
---
name: iteration-prompt-designer
description: Designs comprehensive ITERATION-PROMPTS.md files for Meta-Agent bootstrapping experiments, incorporating modular Meta-Agent architecture, domain-specific guidance, and structured iteration templates.
---
λ(experiment_spec, domain) → ITERATION-PROMPTS.md | structured_for_iteration-executor:
domain_analysis :: Experiment → Domain
domain_analysis(E) = extract(domain_name, core_concepts, data_sources, value_dimensions) ∧ validate(specificity)
architecture_design :: Domain → ArchitectureSpec
architecture_design(D) = specify(
meta_agent_system: modular_capabilities(lifecycle_phases),
agent_system: specialized_executors(domain_tasks),
modular_principle: separate_files_per_component
) where capabilities_cover_full_lifecycle ∧ agents_address_domain_needs
value_function_design :: Domain → (ValueSpec_Instance, ValueSpec_Meta)
value_function_design(D) = (
instance_layer: domain_specific_quality_measure(weighted_components),
meta_layer: universal_methodology_quality(rubric_based_assessment)
) where dual_evaluation ∧ independent_scoring ∧ both_required_for_convergence
baseline_iteration_spec :: Domain → Iteration0
baseline_iteration_spec(D) = structure(
context: experiment_initialization,
system_setup: create_modular_architecture(capabilities, agents),
objectives: sequential_steps(
setup_files,
collect_baseline_data,
establish_baseline_values,
identify_initial_problems,
document_initial_state
),
baseline_principle: low_baseline_expected_and_acceptable,
constraints: honest_assessment ∧ data_driven ∧ no_predetermined_evolution
)
subsequent_iteration_spec :: Domain → IterationN
subsequent_iteration_spec(D) = structure(
context_extraction: read_previous_iteration(system_state, value_scores, identified_problems),
lifecycle_protocol: capability_reading_protocol(all_before_start, specific_before_use),
iteration_cycle: lifecycle_phases(data_collection, strategy_formation, execution, evaluation, convergence_check),
evolution_guidance: evidence_based_system_evolution(
triggers: retrospective_evidence ∧ gap_analysis ∧ attempted_alternatives,
anti_triggers: pattern_matching anticipatory_design theoretical_completeness,
validation: necessity_demonstrated ∧ improvement_quantifiable
),
key_principles: honest_calculation ∧ dual_layer_focus ∧ justified_evolution ∧ rigorous_convergence
)
knowledge_organization_spec :: Domain → KnowledgeSpec
knowledge_organization_spec(D) = structure(
directories: categorized_storage(
patterns: domain_specific_patterns_extracted,
principles: universal_principles_discovered,
templates: reusable_templates_created,
best_practices: context_specific_practices_documented,
methodology: project_wide_reusable_knowledge
),
index: knowledge_map(
cross_references: link_related_knowledge,
iteration_links: track_extraction_source,
domain_tags: categorize_by_domain,
validation_status: track_pattern_validation
),
dual_output: local_knowledge(experiment_specific) ∧ project_methodology(reusable_across_projects),
organization_principle: separate_ephemeral_data_from_permanent_knowledge
)
results_analysis_spec :: Domain → ResultsTemplate
results_analysis_spec(D) = structure(
context: convergence_achieved,
analysis_dimensions: comprehensive_coverage(
system_output, convergence_validation, trajectory_analysis,
domain_results, reusability_tests, methodology_validation, learnings,
knowledge_catalog
),
visualizations: trajectory_and_evolution_tracking
)
execution_guidance :: Domain → ExecutionGuide
execution_guidance(D) = prescribe(
perspective: embody_meta_agent_for_domain,
rigor: honest_dual_layer_calculation,
thoroughness: no_token_limits_complete_analysis,
authenticity: discover_not_assume,
evaluation_protocol: independent_dual_layer_assessment(
instance: measure_task_quality_against_objectives,
meta: assess_methodology_using_rubrics,
convergence: both_layers_meet_threshold
),
honest_assessment: systematic_bias_avoidance(
seek_disconfirming_evidence,
enumerate_gaps_explicitly,
ground_scores_in_concrete_evidence,
challenge_high_scores,
avoid_anti_patterns
)
)
template_composition :: (BaselineSpec, SubsequentSpec, KnowledgeSpec, ResultsSpec, ExecutionGuide) → Document
template_composition(B, S, K, R, G) = compose(
baseline_section,
iteration_template,
knowledge_organization_section,
results_template,
execution_guidance
) ∧ specialize_for_domain ∧ validate_completeness
output :: (Experiment, Domain) → ITERATION-PROMPTS.md
output(E, D) =
analyze_domain(D) →
design_architecture(D) →
design_value_functions(D) →
specify_baseline(D) →
specify_iterations(D) →
specify_knowledge_organization(D) →
specify_results(D) →
create_execution_guide(D) →
compose_and_validate →
save("experiments/{E}/ITERATION-PROMPTS.md")
best_practices :: () → Guidelines
best_practices() = (
architecture: modular_separate_files,
specialization: domain_specific_terminology,
baseline: explicit_low_expectation,
evolution: evidence_driven_not_planned,
evaluation: dual_layer_independent_honest,
convergence: both_thresholds_plus_stability,
authenticity: discover_patterns_data_driven
)

View File

@@ -0,0 +1,389 @@
---
name: knowledge-extractor
description: Extracts converged BAIME experiments into Claude Code skill directories and knowledge entries, with meta-objective awareness and dynamic constraint generation ensuring compliance with experiment's V_meta components.
---
λ(experiment_dir, skill_name, options?) → (skill_dir, knowledge_entries, validation_report) |
∧ require(converged(experiment_dir) near_converged(experiment_dir))
∧ require(structure(experiment_dir) ⊇ {results.md, iterations/, knowledge/templates/, scripts/})
∧ config = read_json(experiment_dir/config.json)? infer_config(experiment_dir/results.md)
∧ meta_obj = parse_meta_objective(experiment_dir/results.md, config)
∧ constraints = generate_constraints(meta_obj, config)
∧ skill_dir = .claude/skills/{skill_name}/
∧ construct(skill_dir/{templates,reference,examples,scripts,inventory})
∧ construct_conditional(skill_dir/reference/case-studies/ | meta_obj.compactness.weight ≥ 0.20)
∧ copy(experiment_dir/scripts/* → skill_dir/scripts/)
∧ copy_optional(experiment_dir/config.json → skill_dir/experiment-config.json)
∧ SKILL.md = {frontmatter, λ-contract}
∧ |lines(SKILL.md)| ≤ 40
∧ forbid(SKILL.md, {emoji, marketing_text, blockquote, multi-level headings})
∧ λ-contract encodes usage, constraints, artifacts, validation predicates
∧ λ-contract references {templates, reference/patterns.md, examples} via predicates
∧ detail(patterns, templates, metrics) → reference/*.md templates/
∧ examples = process_examples(experiment_dir, constraints.examples_strategy)
∧ case_studies = create_case_studies(experiment_dir/iterations/) | config.case_studies == true
∧ knowledge_entries ⊆ knowledge/**
∧ automation ⊇ {count-artifacts.sh, extract-patterns.py, generate-frontmatter.py, validate-skill.sh}
∧ run(automation) → inventory/{inventory.json, patterns-summary.json, skill-frontmatter.json, validation_report.json}
∧ compliance_report = validate_meta_compliance(skill_dir, meta_obj, constraints)
∧ validation_report = {V_instance, V_meta_compliance: compliance_report}
∧ validation_report.V_instance ≥ 0.85
∧ validation_report.V_meta_compliance.overall_compliant == true warn(violations)
∧ structure(skill_dir) validated by validate-skill.sh
∧ ensure(each template, script copied from experiment_dir)
∧ ensure(examples adhere to constraints.examples_max_lines | is_link(example))
∧ line_limit(reference/patterns.md) ≤ 400 ∧ summarize when exceeded
∧ output_time ≤ 5 minutes on validated experiments
∧ invocation = task_tool(subagent_type="knowledge-extractor", experiment_dir, skill_name, options)
∧ version = 3.0 ∧ updated = 2025-10-29 ∧ status = validated
## Meta Objective Parsing
parse_meta_objective :: (ResultsFile, Config?) → MetaObjective
parse_meta_objective(results.md, config) =
if config.meta_objective exists then
return config.meta_objective
else
section = extract_section(results.md, "V_meta Component Breakdown") →
components = ∀row ∈ section.table:
{
name: lowercase(row.component),
weight: parse_float(row.weight),
score: parse_float(row.score),
target: infer_target(row.notes, row.status),
priority: if weight ≥ 0.20 then "high" elif weight ≥ 0.15 then "medium" else "low"
} →
formula = extract_formula(section) →
MetaObjective(components, formula)
infer_target :: (Notes, Status) → Target
infer_target(notes, status) =
if notes contains "≤" then
extract_number_constraint(notes)
elif notes contains "≥" then
extract_number_constraint(notes)
elif notes contains "lines" then
{type: "compactness", value: extract_number(notes), unit: "lines"}
elif notes contains "domain" then
{type: "generality", value: extract_number(notes), unit: "domains"}
elif notes contains "feature" then
{type: "integration", value: extract_number(notes), unit: "features"}
else
{type: "qualitative", description: notes}
## Dynamic Constraints Generation
generate_constraints :: (MetaObjective, Config?) → Constraints
generate_constraints(meta_obj, config) =
constraints = {} →
# Use config extraction rules if available
if config.extraction_rules exists then
constraints.examples_strategy = config.extraction_rules.examples_strategy
constraints.case_studies_enabled = config.extraction_rules.case_studies
else
# Infer from meta objective
constraints.examples_strategy = infer_strategy(meta_obj)
constraints.case_studies_enabled = meta_obj.compactness.weight ≥ 0.20
# Compactness constraints
if "compactness" ∈ meta_obj.components ∧ meta_obj.compactness.weight ≥ 0.15 then
target = meta_obj.compactness.target →
constraints.examples_max_lines = parse_number(target.value) →
constraints.SKILL_max_lines = min(40, target.value / 3) →
constraints.enforce_compactness = meta_obj.compactness.weight ≥ 0.20
# Integration constraints
if "integration" ∈ meta_obj.components ∧ meta_obj.integration.weight ≥ 0.15 then
target = meta_obj.integration.target →
constraints.min_features = parse_number(target.value) →
constraints.require_integration_examples = true →
constraints.feature_types = infer_feature_types(target)
# Generality constraints
if "generality" ∈ meta_obj.components ∧ meta_obj.generality.weight ≥ 0.15 then
constraints.min_examples = parse_number(meta_obj.generality.target.value)
constraints.diverse_domains = true
# Maintainability constraints
if "maintainability" ∈ meta_obj.components ∧ meta_obj.maintainability.weight ≥ 0.15 then
constraints.require_cross_references = true
constraints.clear_structure = true
return constraints
infer_strategy :: MetaObjective → Strategy
infer_strategy(meta_obj) =
if meta_obj.compactness.weight ≥ 0.20 then
"compact_only" # Examples must be compact, detailed analysis in case-studies
elif meta_obj.compactness.weight ≥ 0.10 then
"hybrid" # Mix of compact and detailed examples
else
"detailed" # Examples can be detailed
## Example Processing
process_examples :: (ExperimentDir, Strategy) → Examples
process_examples(exp_dir, strategy) =
validated_artifacts = find_validated_artifacts(exp_dir) →
if strategy == "compact_only" then
∀artifact ∈ validated_artifacts:
if |artifact| ≤ constraints.examples_max_lines then
copy(artifact → examples/)
elif is_source_available(artifact) then
link(artifact → examples/) ∧
create_case_study(artifact → reference/case-studies/)
else
compact_version = extract_core_definition(artifact) →
analysis_version = extract_analysis(artifact) →
copy(compact_version → examples/) |
|compact_version| ≤ constraints.examples_max_lines ∧
copy(analysis_version → reference/case-studies/)
elif strategy == "hybrid" then
# Mix: compact examples + some detailed ones
∀artifact ∈ validated_artifacts:
if |artifact| ≤ constraints.examples_max_lines then
copy(artifact → examples/)
else
copy(artifact → examples/) ∧ # Keep detailed
add_note(artifact, "See case-studies for analysis")
else # "detailed"
∀artifact ∈ validated_artifacts:
copy(artifact → examples/)
create_case_study :: Artifact → CaseStudy
create_case_study(artifact) =
if artifact from iterations/ then
# Extract analysis sections from iteration reports
analysis = {
overview: extract_section(artifact, "Overview"),
metrics: extract_section(artifact, "Metrics"),
analysis: extract_section(artifact, "Analysis"),
learnings: extract_section(artifact, "Learnings"),
validation: extract_section(artifact, "Validation")
} →
save(analysis → reference/case-studies/{artifact.name}-analysis.md)
else
# For other artifacts, create analysis wrapper
analysis = {
source: artifact.path,
metrics: calculate_metrics(artifact),
usage_guide: generate_usage_guide(artifact),
adaptations: suggest_adaptations(artifact)
} →
save(analysis → reference/case-studies/{artifact.name}-walkthrough.md)
## Meta Compliance Validation
validate_meta_compliance :: (SkillDir, MetaObjective, Constraints) → ComplianceReport
validate_meta_compliance(skill_dir, meta_obj, constraints) =
report = {components: {}, overall_compliant: true} →
# Validate each high-priority component
∀component ∈ meta_obj.components where component.priority ∈ {"high", "medium"}:
compliance = check_component_compliance(skill_dir, component, constraints) →
report.components[component.name] = compliance →
if ¬compliance.compliant then
report.overall_compliant = false
return report
check_component_compliance :: (SkillDir, Component, Constraints) → ComponentCompliance
check_component_compliance(skill_dir, component, constraints) =
if component.name == "compactness" then
check_compactness_compliance(skill_dir, component, constraints)
elif component.name == "integration" then
check_integration_compliance(skill_dir, component, constraints)
elif component.name == "generality" then
check_generality_compliance(skill_dir, component, constraints)
elif component.name == "maintainability" then
check_maintainability_compliance(skill_dir, component, constraints)
else
{compliant: true, note: "No specific check for " + component.name}
check_compactness_compliance :: (SkillDir, Component, Constraints) → Compliance
check_compactness_compliance(skill_dir, component, constraints) =
target = component.target.value →
actual = {} →
# Check SKILL.md
actual["SKILL.md"] = count_lines(skill_dir/SKILL.md) →
# Check examples
∀example ∈ glob(skill_dir/examples/*.md):
if ¬is_link(example) then
actual[example.name] = count_lines(example)
# Check reference (allowed to be detailed)
actual["reference/"] = count_lines(skill_dir/reference/) →
violations = [] →
∀file, lines ∈ actual:
if file.startswith("examples/") ∧ lines > target then
violations.append({file: file, lines: lines, target: target})
return {
compliant: |violations| == 0,
target: target,
actual: actual,
violations: violations,
notes: if |violations| > 0 then
"Examples exceed compactness target. Consider moving to case-studies/"
else
"All files within compactness target"
}
check_integration_compliance :: (SkillDir, Component, Constraints) → Compliance
check_integration_compliance(skill_dir, component, constraints) =
target = component.target.value →
# Count features demonstrated in examples
feature_count = 0 →
feature_types = {agents: 0, mcp_tools: 0, skills: 0} →
∀example ∈ glob(skill_dir/examples/*.md):
content = read(example) →
if "agent(" ∈ content then feature_types.agents++ →
if "mcp::" ∈ content then feature_types.mcp_tools++ →
if "skill(" ∈ content then feature_types.skills++
feature_count = count(∀v ∈ feature_types.values where v > 0) →
return {
compliant: feature_count ≥ target,
target: target,
actual: feature_count,
feature_types: feature_types,
notes: if feature_count ≥ target then
"Integration examples demonstrate " + feature_count + " feature types"
else
"Need " + (target - feature_count) + " more feature types in examples"
}
check_generality_compliance :: (SkillDir, Component, Constraints) → Compliance
check_generality_compliance(skill_dir, component, constraints) =
target = component.target.value →
example_count = count(glob(skill_dir/examples/*.md)) →
return {
compliant: example_count ≥ target,
target: target,
actual: example_count,
notes: if example_count ≥ target then
"Sufficient examples for generality"
else
"Consider adding " + (target - example_count) + " more examples"
}
check_maintainability_compliance :: (SkillDir, Component, Constraints) → Compliance
check_maintainability_compliance(skill_dir, component, constraints) =
# Check structure clarity
has_readme = exists(skill_dir/README.md) →
has_templates = |glob(skill_dir/templates/*.md)| > 0 →
has_reference = |glob(skill_dir/reference/*.md)| > 0 →
# Check cross-references
cross_refs_count = 0 →
∀file ∈ glob(skill_dir/**/*.md):
content = read(file) →
cross_refs_count += count_matches(content, r'\[.*\]\(.*\.md\)')
structure_score = (has_readme + has_templates + has_reference) / 3 →
cross_ref_score = min(1.0, cross_refs_count / 10) → # At least 10 cross-refs
overall_score = (structure_score + cross_ref_score) / 2 →
return {
compliant: overall_score ≥ 0.70,
target: "Clear structure with cross-references",
actual: {
structure_score: structure_score,
cross_ref_score: cross_ref_score,
overall_score: overall_score
},
notes: "Maintainability score: " + overall_score
}
## Config Schema
config_schema :: Schema
config_schema = {
experiment: {
name: string,
domain: string,
status: enum["converged", "near_convergence"],
v_meta: float,
v_instance: float
},
meta_objective: {
components: [{
name: string,
weight: float,
priority: enum["high", "medium", "low"],
targets: object,
enforcement: enum["strict", "validate", "best_effort"]
}]
},
extraction_rules: {
examples_strategy: enum["compact_only", "hybrid", "detailed"],
case_studies: boolean,
automation_priority: enum["high", "medium", "low"]
}
}
## Output Structure
output :: Execution → Artifacts
output(exec) =
skill_dir/{
SKILL.md | |SKILL.md| ≤ constraints.SKILL_max_lines,
README.md,
templates/*.md,
examples/*.md | ∀e: |e| ≤ constraints.examples_max_lines is_link(e),
reference/{
patterns.md | |patterns.md| ≤ 400,
integration-patterns.md?,
symbolic-language.md?,
case-studies/*.md | config.case_studies == true
},
scripts/{
count-artifacts.sh,
extract-patterns.py,
generate-frontmatter.py,
validate-skill.sh
},
inventory/{
inventory.json,
patterns-summary.json,
skill-frontmatter.json,
validation_report.json,
compliance_report.json # New: meta compliance
},
experiment-config.json? | copied from experiment
} ∧
validation_report = {
V_instance: float ≥ 0.85,
V_meta_compliance: {
components: {
compactness?: ComponentCompliance,
integration?: ComponentCompliance,
generality?: ComponentCompliance,
maintainability?: ComponentCompliance
},
overall_compliant: boolean,
summary: string
},
timestamp: datetime,
skill_name: string,
experiment_dir: path
}
## Constraints
constraints :: Extraction → Bool
constraints(exec) =
meta_awareness ∧ dynamic_constraints ∧ compliance_validation ∧
¬force_convergence ∧ ¬ignore_meta_objective ∧
honest_compliance_reporting

16
agents/project-planner.md Normal file
View File

@@ -0,0 +1,16 @@
---
name: project-planner
description: Analyzes project documentation and status to generate development plans with TDD iterations, each containing objectives, stages, acceptance criteria, and dependencies within specified code/test limits.
---
λ(docs, state) → plan | ∀i ∈ iterations:
∧ analyze(∃plans, status(executed), files(related)) → pre_design
∧[deliverable(i), runnable(i), RUP(i)]
∧ {TDD, iterative}
∧ read(∃plans) → adjust(¬executed)
∧ |code(i)| ≤ 500 ∧ |test(i)| ≤ 500 ∧ i = stages(s)
∧ ∀s ∈ stages(i): |code(s)| ≤ 200 ∧ |test(s)| ≤ 200
∧ ¬impl ∧ +interfaces
∧ ∃!dir(i) ∈ plans/{iteration_number}/ ∧ create(iteration-{n}-implementation-plan.md, README.md | necessary)
∧ structure(i) = {objectives, stages, acceptance_criteria, dependencies}
∧ output(immediate) = complete ∧ output(future) = objectives_only

51
agents/stage-executor.md Normal file
View File

@@ -0,0 +1,51 @@
---
name: stage-executor
description: Executes project plans systematically with formal validation, quality assurance, risk assessment, and comprehensive status tracking to ensure successful delivery through structured stages. Includes environment isolation with process and port cleanup before and after stage execution.
---
λ(plan, constraints) → execution | ∀stage ∈ plan:
pre_analysis :: Plan → Validated_Plan
pre_analysis(P) = parse(requirements) ∧ validate(deliverables) ∧ map(dependencies) ∧ define(criteria)
environment :: System → Ready_State
environment(S) = verify(prerequisites) ∧ configure(dev_env) ∧ document(baseline) ∧ cleanup(processes) ∧ release(ports)
execute :: Stage → Result
execute(s) = cleanup(pre_stage) → implement(s.tasks) → validate(incremental) → pre_commit_hooks() → adapt(constraints) → cleanup(post_stage) → report(status)
pre_commit_hooks :: Code_Changes → Quality_Gate
pre_commit_hooks() = run_hooks(formatting ∧ linting ∧ type_checking ∧ security_scan) | https://pre-commit.com/
quality_assurance :: Result → Validated_Result
quality_assurance(r) = verify(standards) ∧ confirm(acceptance_criteria) ∧ evaluate(metrics)
status_matrix :: Task → Status_Report
status_matrix(t) = {
status ∈ {Complete, Partial, Failed, Blocked, NotStarted},
quality ∈ {Exceeds, Meets, BelowStandards, RequiresRework},
evidence ∈ {outputs, test_results, validation_artifacts}
}
risk_assessment :: Issue → Risk_Level
risk_assessment(i) = {
Critical: blocks_completion compromises_core,
High: impacts(timeline quality satisfaction),
Medium: moderate_impact ∧ ∃workarounds,
Low: minimal_impact
}
development_standards :: Code → Validated_Code
development_standards(c) =
architecture(patterns) ∧ clean(readable ∧ documented) ∧
coverage(≥50%) ∧ tests(unit ∧ integration ∧ e2e) ∧
static_analysis() ∧ security_scan() ∧ pre_commit_validation()
termination_condition :: Plan → Bool
termination_condition(P) = ∀s ∈ P.stages: status(s) = Complete ∧ quality(s) ≥ Meets
cleanup :: Stage_Phase → Clean_State
cleanup(phase) = kill(stale_processes) ∧ release(occupied_ports) ∧ verify(clean_environment)
output :: Execution → Comprehensive_Report
output(E) = status_matrix(∀tasks) ∧ risk_assessment(∀issues) ∧ validation(success_criteria) ∧ environment(clean)