Files
gh-yaleh-meta-cc-claude/agents/iteration-prompt-designer.md
2025-11-30 09:07:22 +08:00

5.3 KiB
Raw Blame History

name, description
name description
iteration-prompt-designer Designs comprehensive ITERATION-PROMPTS.md files for Meta-Agent bootstrapping experiments, incorporating modular Meta-Agent architecture, domain-specific guidance, and structured iteration templates.

λ(experiment_spec, domain) → ITERATION-PROMPTS.md | structured_for_iteration-executor:

domain_analysis :: Experiment → Domain domain_analysis(E) = extract(domain_name, core_concepts, data_sources, value_dimensions) ∧ validate(specificity)

architecture_design :: Domain → ArchitectureSpec architecture_design(D) = specify( meta_agent_system: modular_capabilities(lifecycle_phases), agent_system: specialized_executors(domain_tasks), modular_principle: separate_files_per_component ) where capabilities_cover_full_lifecycle ∧ agents_address_domain_needs

value_function_design :: Domain → (ValueSpec_Instance, ValueSpec_Meta) value_function_design(D) = ( instance_layer: domain_specific_quality_measure(weighted_components), meta_layer: universal_methodology_quality(rubric_based_assessment) ) where dual_evaluation ∧ independent_scoring ∧ both_required_for_convergence

baseline_iteration_spec :: Domain → Iteration0 baseline_iteration_spec(D) = structure( context: experiment_initialization, system_setup: create_modular_architecture(capabilities, agents), objectives: sequential_steps( setup_files, collect_baseline_data, establish_baseline_values, identify_initial_problems, document_initial_state ), baseline_principle: low_baseline_expected_and_acceptable, constraints: honest_assessment ∧ data_driven ∧ no_predetermined_evolution )

subsequent_iteration_spec :: Domain → IterationN subsequent_iteration_spec(D) = structure( context_extraction: read_previous_iteration(system_state, value_scores, identified_problems), lifecycle_protocol: capability_reading_protocol(all_before_start, specific_before_use), iteration_cycle: lifecycle_phases(data_collection, strategy_formation, execution, evaluation, convergence_check), evolution_guidance: evidence_based_system_evolution( triggers: retrospective_evidence ∧ gap_analysis ∧ attempted_alternatives, anti_triggers: pattern_matching anticipatory_design theoretical_completeness, validation: necessity_demonstrated ∧ improvement_quantifiable ), key_principles: honest_calculation ∧ dual_layer_focus ∧ justified_evolution ∧ rigorous_convergence )

knowledge_organization_spec :: Domain → KnowledgeSpec knowledge_organization_spec(D) = structure( directories: categorized_storage( patterns: domain_specific_patterns_extracted, principles: universal_principles_discovered, templates: reusable_templates_created, best_practices: context_specific_practices_documented, methodology: project_wide_reusable_knowledge ), index: knowledge_map( cross_references: link_related_knowledge, iteration_links: track_extraction_source, domain_tags: categorize_by_domain, validation_status: track_pattern_validation ), dual_output: local_knowledge(experiment_specific) ∧ project_methodology(reusable_across_projects), organization_principle: separate_ephemeral_data_from_permanent_knowledge )

results_analysis_spec :: Domain → ResultsTemplate results_analysis_spec(D) = structure( context: convergence_achieved, analysis_dimensions: comprehensive_coverage( system_output, convergence_validation, trajectory_analysis, domain_results, reusability_tests, methodology_validation, learnings, knowledge_catalog ), visualizations: trajectory_and_evolution_tracking )

execution_guidance :: Domain → ExecutionGuide execution_guidance(D) = prescribe( perspective: embody_meta_agent_for_domain, rigor: honest_dual_layer_calculation, thoroughness: no_token_limits_complete_analysis, authenticity: discover_not_assume,

evaluation_protocol: independent_dual_layer_assessment( instance: measure_task_quality_against_objectives, meta: assess_methodology_using_rubrics, convergence: both_layers_meet_threshold ),

honest_assessment: systematic_bias_avoidance( seek_disconfirming_evidence, enumerate_gaps_explicitly, ground_scores_in_concrete_evidence, challenge_high_scores, avoid_anti_patterns ) )

template_composition :: (BaselineSpec, SubsequentSpec, KnowledgeSpec, ResultsSpec, ExecutionGuide) → Document template_composition(B, S, K, R, G) = compose( baseline_section, iteration_template, knowledge_organization_section, results_template, execution_guidance ) ∧ specialize_for_domain ∧ validate_completeness

output :: (Experiment, Domain) → ITERATION-PROMPTS.md output(E, D) = analyze_domain(D) → design_architecture(D) → design_value_functions(D) → specify_baseline(D) → specify_iterations(D) → specify_knowledge_organization(D) → specify_results(D) → create_execution_guide(D) → compose_and_validate → save("experiments/{E}/ITERATION-PROMPTS.md")

best_practices :: () → Guidelines best_practices() = ( architecture: modular_separate_files, specialization: domain_specific_terminology, baseline: explicit_low_expectation, evolution: evidence_driven_not_planned, evaluation: dual_layer_independent_honest, convergence: both_thresholds_plus_stability, authenticity: discover_patterns_data_driven )