Initial commit
This commit is contained in:
141
skills/pdftext/references/tool-comparison.md
Normal file
141
skills/pdftext/references/tool-comparison.md
Normal file
@@ -0,0 +1,141 @@
|
||||
# PDF Tool Comparison
|
||||
|
||||
## Summary Table
|
||||
|
||||
| Tool | Type | Speed | Quality Issues | Garbled | Structure | License |
|
||||
|------|------|-------|----------------|---------|-----------|---------|
|
||||
| **Docling** | ML | 0.43s/page | 50 | 0 | ✓ Yes | Apache 2.0 |
|
||||
| **PyMuPDF** | Traditional | 0.01s/page | 1 | 0 | ✗ No | AGPL |
|
||||
| **pdfplumber** | Traditional | 0.44s/page | 0 | 0 | ✗ No | MIT |
|
||||
| **pdftotext** | Traditional | 0.007s/page | 90 | 0 | ✗ No | GPL |
|
||||
| **pdfminer.six** | Traditional | 0.15s/page | 45 | 0 | ✗ No | MIT |
|
||||
| **pypdf** | Traditional | 0.25s/page | 120 | 5 | ✗ No | BSD |
|
||||
|
||||
*Test environment: 90-page academic PDF, 1.9 MB*
|
||||
|
||||
## Detailed Comparison
|
||||
|
||||
### Docling (Recommended for Academic PDFs)
|
||||
|
||||
**Advantages:**
|
||||
- Only tool that preserves structure (headers, tables, lists)
|
||||
- AI-powered layout understanding via RT-DETR + TableFormer
|
||||
- Markdown output perfect for LLMs
|
||||
- 97.9% table accuracy in enterprise benchmarks
|
||||
- On-device processing (no API calls)
|
||||
|
||||
**Disadvantages:**
|
||||
- Slower than PyMuPDF (40x)
|
||||
- Requires 500MB-1GB model download
|
||||
- Some ligature encoding issues
|
||||
|
||||
**Use when:**
|
||||
- Document structure is essential
|
||||
- Processing academic papers with tables
|
||||
- Preparing content for RAG systems
|
||||
- LLM consumption is primary goal
|
||||
|
||||
### PyMuPDF (Recommended for Speed)
|
||||
|
||||
**Advantages:**
|
||||
- Fastest tool (60x faster than pdfplumber)
|
||||
- Excellent quality (only 1 issue in test)
|
||||
- Clean output with minimal artifacts
|
||||
- C-based, highly optimized
|
||||
|
||||
**Disadvantages:**
|
||||
- No structure preservation
|
||||
- AGPL license (restrictive for commercial use)
|
||||
- Flat text output
|
||||
|
||||
**Use when:**
|
||||
- Speed is critical
|
||||
- Simple text extraction sufficient
|
||||
- Batch processing large datasets
|
||||
- Structure preservation not needed
|
||||
|
||||
### pdfplumber (Recommended for Quality)
|
||||
|
||||
**Advantages:**
|
||||
- Perfect quality (0 issues)
|
||||
- Character-level spatial analysis
|
||||
- Geometric table detection
|
||||
- MIT license
|
||||
|
||||
**Disadvantages:**
|
||||
- Very slow (60x slower than PyMuPDF)
|
||||
- No markdown structure output
|
||||
- CPU-intensive
|
||||
|
||||
**Use when:**
|
||||
- Maximum fidelity required
|
||||
- Quality more important than speed
|
||||
- Processing critical documents
|
||||
- Slow processing acceptable
|
||||
|
||||
## Traditional vs ML-Based
|
||||
|
||||
### Traditional Tools
|
||||
|
||||
**How they work:**
|
||||
- Parse PDF internal structure
|
||||
- Extract embedded text objects
|
||||
- Follow PDF specification rules
|
||||
|
||||
**Advantages:**
|
||||
- Fast (no ML inference)
|
||||
- Small footprint (no model files)
|
||||
- Deterministic output
|
||||
|
||||
**Disadvantages:**
|
||||
- No layout understanding
|
||||
- Cannot handle borderless tables
|
||||
- Lose document hierarchy
|
||||
|
||||
### ML-Based Tools (Docling)
|
||||
|
||||
**How they work:**
|
||||
- Computer vision to "see" document layout
|
||||
- RT-DETR detects layout regions
|
||||
- TableFormer understands table structure
|
||||
- Hybrid: ML for layout + PDF parsing for text
|
||||
|
||||
**Advantages:**
|
||||
- Understands visual layout
|
||||
- Handles complex multi-column layouts
|
||||
- Preserves semantic structure
|
||||
- Works with borderless tables
|
||||
|
||||
**Disadvantages:**
|
||||
- Slower (ML inference time)
|
||||
- Larger footprint (model files)
|
||||
- Non-deterministic output
|
||||
|
||||
## Architecture Details
|
||||
|
||||
### Docling Pipeline
|
||||
|
||||
1. **PDF Backend** - Extracts raw content and positions
|
||||
2. **AI Models** - Analyze layout and structure
|
||||
- RT-DETR: Layout analysis (44-633ms/page)
|
||||
- TableFormer: Table structure (400ms-1.74s/table)
|
||||
3. **Assembly** - Combines understanding with text
|
||||
|
||||
### pdfplumber Architecture
|
||||
|
||||
1. **Built on pdfminer.six** - Character-level extraction
|
||||
2. **Spatial clustering** - Groups chars into words/lines
|
||||
3. **Geometric detection** - Finds tables from lines/rectangles
|
||||
4. **Character objects** - Full metadata (position, font, size, color)
|
||||
|
||||
## Enterprise Benchmarks (2025 Procycons)
|
||||
|
||||
| Tool | Table Accuracy | Text Fidelity | Speed (s/page) |
|
||||
|------|----------------|---------------|----------------|
|
||||
| Docling | 97.9% | 100% | 6.28 |
|
||||
| Marker | 89.2% | 98.5% | 8.45 |
|
||||
| MinerU | 92.1% | 99.2% | 12.33 |
|
||||
| Unstructured.io | 75.0% | 95.8% | 51.02 |
|
||||
| LlamaParse | 88.5% | 97.3% | 6.00 |
|
||||
|
||||
*Source: Procycons Enterprise PDF Processing Benchmark 2025*
|
||||
Reference in New Issue
Block a user