Files
gh-warrenzhu050413-warren-c…/skills/pdftext/references/tool-comparison.md
2025-11-30 09:05:19 +08:00

3.9 KiB

PDF Tool Comparison

Summary Table

Tool Type Speed Quality Issues Garbled Structure License
Docling ML 0.43s/page 50 0 ✓ Yes Apache 2.0
PyMuPDF Traditional 0.01s/page 1 0 ✗ No AGPL
pdfplumber Traditional 0.44s/page 0 0 ✗ No MIT
pdftotext Traditional 0.007s/page 90 0 ✗ No GPL
pdfminer.six Traditional 0.15s/page 45 0 ✗ No MIT
pypdf Traditional 0.25s/page 120 5 ✗ No BSD

Test environment: 90-page academic PDF, 1.9 MB

Detailed Comparison

Advantages:

  • Only tool that preserves structure (headers, tables, lists)
  • AI-powered layout understanding via RT-DETR + TableFormer
  • Markdown output perfect for LLMs
  • 97.9% table accuracy in enterprise benchmarks
  • On-device processing (no API calls)

Disadvantages:

  • Slower than PyMuPDF (40x)
  • Requires 500MB-1GB model download
  • Some ligature encoding issues

Use when:

  • Document structure is essential
  • Processing academic papers with tables
  • Preparing content for RAG systems
  • LLM consumption is primary goal

Advantages:

  • Fastest tool (60x faster than pdfplumber)
  • Excellent quality (only 1 issue in test)
  • Clean output with minimal artifacts
  • C-based, highly optimized

Disadvantages:

  • No structure preservation
  • AGPL license (restrictive for commercial use)
  • Flat text output

Use when:

  • Speed is critical
  • Simple text extraction sufficient
  • Batch processing large datasets
  • Structure preservation not needed

Advantages:

  • Perfect quality (0 issues)
  • Character-level spatial analysis
  • Geometric table detection
  • MIT license

Disadvantages:

  • Very slow (60x slower than PyMuPDF)
  • No markdown structure output
  • CPU-intensive

Use when:

  • Maximum fidelity required
  • Quality more important than speed
  • Processing critical documents
  • Slow processing acceptable

Traditional vs ML-Based

Traditional Tools

How they work:

  • Parse PDF internal structure
  • Extract embedded text objects
  • Follow PDF specification rules

Advantages:

  • Fast (no ML inference)
  • Small footprint (no model files)
  • Deterministic output

Disadvantages:

  • No layout understanding
  • Cannot handle borderless tables
  • Lose document hierarchy

ML-Based Tools (Docling)

How they work:

  • Computer vision to "see" document layout
  • RT-DETR detects layout regions
  • TableFormer understands table structure
  • Hybrid: ML for layout + PDF parsing for text

Advantages:

  • Understands visual layout
  • Handles complex multi-column layouts
  • Preserves semantic structure
  • Works with borderless tables

Disadvantages:

  • Slower (ML inference time)
  • Larger footprint (model files)
  • Non-deterministic output

Architecture Details

Docling Pipeline

  1. PDF Backend - Extracts raw content and positions
  2. AI Models - Analyze layout and structure
    • RT-DETR: Layout analysis (44-633ms/page)
    • TableFormer: Table structure (400ms-1.74s/table)
  3. Assembly - Combines understanding with text

pdfplumber Architecture

  1. Built on pdfminer.six - Character-level extraction
  2. Spatial clustering - Groups chars into words/lines
  3. Geometric detection - Finds tables from lines/rectangles
  4. Character objects - Full metadata (position, font, size, color)

Enterprise Benchmarks (2025 Procycons)

Tool Table Accuracy Text Fidelity Speed (s/page)
Docling 97.9% 100% 6.28
Marker 89.2% 98.5% 8.45
MinerU 92.1% 99.2% 12.33
Unstructured.io 75.0% 95.8% 51.02
LlamaParse 88.5% 97.3% 6.00

Source: Procycons Enterprise PDF Processing Benchmark 2025