701 lines
17 KiB
Markdown
701 lines
17 KiB
Markdown
# Caching Guide
|
|
|
|
Complete guide to caching strategies and configuration in cool-mysql.
|
|
|
|
## Table of Contents
|
|
|
|
1. [Caching Overview](#caching-overview)
|
|
2. [Cache Types](#cache-types)
|
|
3. [Cache Configuration](#cache-configuration)
|
|
4. [TTL Selection](#ttl-selection)
|
|
5. [Multi-Level Caching](#multi-level-caching)
|
|
6. [Cache Invalidation](#cache-invalidation)
|
|
7. [Distributed Locking](#distributed-locking)
|
|
8. [Performance Optimization](#performance-optimization)
|
|
9. [Best Practices](#best-practices)
|
|
|
|
## Caching Overview
|
|
|
|
cool-mysql supports pluggable caching for SELECT queries to reduce database load and improve response times.
|
|
|
|
### How Caching Works
|
|
|
|
1. **Cache Key Generation**: Automatically generated from query + parameters
|
|
2. **Cache Check**: Before executing query, check cache for existing result
|
|
3. **Cache Miss**: Execute query and store result with TTL
|
|
4. **Cache Hit**: Return cached result without database query
|
|
|
|
### What Gets Cached
|
|
|
|
- **Cached**: All SELECT queries with `cacheTTL > 0`
|
|
- **Not Cached**: INSERT, UPDATE, DELETE, EXEC operations
|
|
- **Not Cached**: SELECT queries with `cacheTTL = 0`
|
|
|
|
### Cache Behavior
|
|
|
|
```go
|
|
// No caching (TTL = 0)
|
|
err := db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users`", 0)
|
|
|
|
// Cache for 5 minutes
|
|
err := db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users`", 5*time.Minute)
|
|
|
|
// Cache for 1 hour
|
|
err := db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users` WHERE `active` = 1", time.Hour)
|
|
```
|
|
|
|
## Cache Types
|
|
|
|
### 1. In-Memory Weak Cache
|
|
|
|
**Type**: Local, process-specific, GC-managed
|
|
**Use Case**: Single-server applications, development, testing
|
|
|
|
**Characteristics:**
|
|
- Fastest access (no network)
|
|
- Memory managed by Go GC
|
|
- Weak pointers - automatically freed when under memory pressure
|
|
- Not shared across processes
|
|
- Lost on restart
|
|
|
|
**Setup:**
|
|
```go
|
|
db.UseCache(mysql.NewWeakCache())
|
|
```
|
|
|
|
**Pros:**
|
|
- Zero configuration
|
|
- No external dependencies
|
|
- Automatic memory management
|
|
- Extremely fast
|
|
|
|
**Cons:**
|
|
- Not shared across servers
|
|
- No distributed locking
|
|
- Cache lost on restart
|
|
- Memory limited
|
|
|
|
**Best For:**
|
|
- Development
|
|
- Testing
|
|
- Single-server deployments
|
|
- Applications with low cache requirements
|
|
|
|
### 2. Redis Cache
|
|
|
|
**Type**: Distributed, persistent
|
|
**Use Case**: Multi-server deployments, high-traffic applications
|
|
|
|
**Characteristics:**
|
|
- Shared across all application instances
|
|
- Distributed locking to prevent cache stampedes
|
|
- Configurable persistence
|
|
- Network latency overhead
|
|
- Requires Redis server
|
|
|
|
**Setup:**
|
|
```go
|
|
import "github.com/redis/go-redis/v9"
|
|
|
|
redisClient := redis.NewClient(&redis.Options{
|
|
Addr: "localhost:6379",
|
|
Password: "", // no password set
|
|
DB: 0, // use default DB
|
|
})
|
|
|
|
db.EnableRedis(redisClient)
|
|
```
|
|
|
|
**Pros:**
|
|
- Shared cache across servers
|
|
- Distributed locking
|
|
- Persistent (optional)
|
|
- High capacity
|
|
- Cache stampede prevention
|
|
|
|
**Cons:**
|
|
- Network latency
|
|
- Requires Redis infrastructure
|
|
- More complex setup
|
|
|
|
**Best For:**
|
|
- Production multi-server deployments
|
|
- High-traffic applications
|
|
- Applications requiring cache consistency
|
|
- Preventing thundering herd problems
|
|
|
|
### 3. Memcached Cache
|
|
|
|
**Type**: Distributed, volatile
|
|
**Use Case**: Multi-server deployments, simple caching needs
|
|
|
|
**Characteristics:**
|
|
- Shared across all application instances
|
|
- No persistence
|
|
- Simple protocol
|
|
- No distributed locking
|
|
- Requires Memcached server
|
|
|
|
**Setup:**
|
|
```go
|
|
import "github.com/bradfitz/gomemcache/memcache"
|
|
|
|
memcacheClient := memcache.New("localhost:11211")
|
|
db.EnableMemcache(memcacheClient)
|
|
```
|
|
|
|
**Pros:**
|
|
- Shared cache across servers
|
|
- Simple and fast
|
|
- Mature technology
|
|
- Good performance
|
|
|
|
**Cons:**
|
|
- No distributed locking
|
|
- No persistence
|
|
- Cache lost on restart
|
|
- No cache stampede prevention
|
|
|
|
**Best For:**
|
|
- Legacy infrastructure with Memcached
|
|
- Simple caching needs
|
|
- When distributed locking not required
|
|
|
|
## Cache Configuration
|
|
|
|
### Basic Setup
|
|
|
|
```go
|
|
// In-memory cache
|
|
db := mysql.New(...)
|
|
db.UseCache(mysql.NewWeakCache())
|
|
|
|
// Redis cache
|
|
redisClient := redis.NewClient(&redis.Options{
|
|
Addr: "localhost:6379",
|
|
})
|
|
db.EnableRedis(redisClient)
|
|
|
|
// Memcached
|
|
memcacheClient := memcache.New("localhost:11211")
|
|
db.EnableMemcache(memcacheClient)
|
|
```
|
|
|
|
### Redis Advanced Configuration
|
|
|
|
```go
|
|
redisClient := redis.NewClient(&redis.Options{
|
|
Addr: "localhost:6379",
|
|
Password: "secret",
|
|
DB: 0,
|
|
DialTimeout: 5 * time.Second,
|
|
ReadTimeout: 3 * time.Second,
|
|
WriteTimeout: 3 * time.Second,
|
|
PoolSize: 10,
|
|
MinIdleConns: 5,
|
|
})
|
|
|
|
db.EnableRedis(redisClient)
|
|
```
|
|
|
|
### Redis Cluster
|
|
|
|
```go
|
|
redisClient := redis.NewClusterClient(&redis.ClusterOptions{
|
|
Addrs: []string{
|
|
"localhost:7000",
|
|
"localhost:7001",
|
|
"localhost:7002",
|
|
},
|
|
})
|
|
|
|
db.EnableRedis(redisClient)
|
|
```
|
|
|
|
### Environment Configuration
|
|
|
|
Configure cache behavior via environment variables:
|
|
|
|
```bash
|
|
# Redis lock retry delay (default: 0.020 seconds)
|
|
export COOL_REDIS_LOCK_RETRY_DELAY=0.050
|
|
|
|
# Max query execution time (default: 27 seconds)
|
|
export COOL_MAX_EXECUTION_TIME_TIME=30s
|
|
|
|
# Max retry attempts (default: unlimited)
|
|
export COOL_MAX_ATTEMPTS=5
|
|
```
|
|
|
|
## TTL Selection
|
|
|
|
### TTL Guidelines
|
|
|
|
Choose TTL based on data volatility and access patterns:
|
|
|
|
| Data Type | Recommended TTL | Rationale |
|
|
|-----------|----------------|-----------|
|
|
| User sessions | 5-15 minutes | Frequently changing |
|
|
| Reference data | 1-24 hours | Rarely changing |
|
|
| Analytics/Reports | 15-60 minutes | Tolerates staleness |
|
|
| Real-time data | 0 (no cache) | Must be fresh |
|
|
| Configuration | 5-60 minutes | Infrequent changes |
|
|
| Search results | 1-5 minutes | Balance freshness/load |
|
|
| Product catalogs | 10-30 minutes | Moderate change rate |
|
|
|
|
### Dynamic TTL Selection
|
|
|
|
```go
|
|
// Choose TTL based on query type
|
|
func getCacheTTL(queryType string) time.Duration {
|
|
switch queryType {
|
|
case "user_profile":
|
|
return 10 * time.Minute
|
|
case "product_catalog":
|
|
return 30 * time.Minute
|
|
case "analytics":
|
|
return time.Hour
|
|
case "real_time":
|
|
return 0 // No caching
|
|
default:
|
|
return 5 * time.Minute
|
|
}
|
|
}
|
|
|
|
var users []User
|
|
err := db.Select(&users,
|
|
"SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users` WHERE `active` = 1",
|
|
getCacheTTL("user_profile"))
|
|
```
|
|
|
|
### Conditional TTL
|
|
|
|
```go
|
|
// Cache differently based on result size
|
|
var users []User
|
|
err := db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users` WHERE `status` = @@status", 0,
|
|
status)
|
|
|
|
ttl := 5 * time.Minute
|
|
if len(users) > 1000 {
|
|
// Large result set - cache longer to reduce load
|
|
ttl = 30 * time.Minute
|
|
}
|
|
|
|
// Re-query with caching
|
|
err = db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users` WHERE `status` = @@status", ttl,
|
|
status)
|
|
```
|
|
|
|
## Multi-Level Caching
|
|
|
|
### Layered Cache Strategy
|
|
|
|
Combine fast local cache with shared distributed cache:
|
|
|
|
```go
|
|
db.UseCache(mysql.NewMultiCache(
|
|
mysql.NewWeakCache(), // L1: Fast local cache
|
|
mysql.NewRedisCache(redisClient), // L2: Shared distributed cache
|
|
))
|
|
```
|
|
|
|
**How It Works:**
|
|
1. Check L1 (local weak cache) - fastest
|
|
2. If miss, check L2 (Redis) - shared
|
|
3. If miss, query database
|
|
4. Store result in both L1 and L2
|
|
|
|
**Benefits:**
|
|
- Extremely fast for repeated queries in same process
|
|
- Shared cache prevents duplicate work across servers
|
|
- Best of both worlds: speed + consistency
|
|
|
|
### Custom Multi-Level Configuration
|
|
|
|
```go
|
|
// Create custom cache layers
|
|
type CustomCache struct {
|
|
layers []mysql.Cache
|
|
}
|
|
|
|
func (c *CustomCache) Get(key string) ([]byte, bool) {
|
|
for _, layer := range c.layers {
|
|
if val, ok := layer.Get(key); ok {
|
|
// Backfill previous layers
|
|
for _, prevLayer := range c.layers {
|
|
if prevLayer == layer {
|
|
break
|
|
}
|
|
prevLayer.Set(key, val, 0)
|
|
}
|
|
return val, true
|
|
}
|
|
}
|
|
return nil, false
|
|
}
|
|
|
|
func (c *CustomCache) Set(key string, val []byte, ttl time.Duration) {
|
|
for _, layer := range c.layers {
|
|
layer.Set(key, val, ttl)
|
|
}
|
|
}
|
|
|
|
// Use custom cache
|
|
cache := &CustomCache{
|
|
layers: []mysql.Cache{
|
|
mysql.NewWeakCache(),
|
|
mysql.NewRedisCache(redis1),
|
|
mysql.NewRedisCache(redis2), // Backup Redis
|
|
},
|
|
}
|
|
db.UseCache(cache)
|
|
```
|
|
|
|
## Cache Invalidation
|
|
|
|
### Automatic Invalidation
|
|
|
|
cool-mysql doesn't auto-invalidate on writes. You must handle invalidation explicitly.
|
|
|
|
### Handling Cache After Writes
|
|
|
|
**Note:** Cache keys are generated internally by `cool-mysql` using SHA256 hashing and are not exposed as a public API. You cannot manually invalidate specific cache entries.
|
|
|
|
#### Recommended Pattern: Use SelectWrites
|
|
|
|
```go
|
|
// Write to database
|
|
err := db.Insert("users", user)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Read from write pool for immediate consistency
|
|
err = db.SelectWrites(&user,
|
|
"SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users` WHERE `id` = @@id",
|
|
0, // Don't cache write-pool reads
|
|
user.ID)
|
|
```
|
|
|
|
#### 3. Tag-Based Invalidation
|
|
|
|
```go
|
|
// Tag queries with invalidation keys
|
|
const userCacheTag = "users:all"
|
|
|
|
// Set cache with tag
|
|
err := db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users`", 10*time.Minute)
|
|
redisClient.SAdd(ctx, userCacheTag, cacheKey)
|
|
|
|
// Invalidate all user queries
|
|
keys, _ := redisClient.SMembers(ctx, userCacheTag).Result()
|
|
redisClient.Del(ctx, keys...)
|
|
redisClient.Del(ctx, userCacheTag)
|
|
```
|
|
|
|
#### 4. TTL-Based Invalidation
|
|
|
|
```go
|
|
// Rely on short TTL for eventual consistency
|
|
err := db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users`",
|
|
30*time.Second) // Short TTL = frequent refresh
|
|
```
|
|
|
|
### Cache Invalidation Strategies
|
|
|
|
| Strategy | Pros | Cons | Best For |
|
|
|----------|------|------|----------|
|
|
| Manual invalidation | Precise control | Complex to implement | Critical data |
|
|
| SelectWrites | Simple, consistent | Bypasses read pool | Read-after-write |
|
|
| Short TTL | Simple, automatic | Higher DB load | Frequently changing data |
|
|
| Tag-based | Bulk invalidation | Requires Redis | Related queries |
|
|
|
|
## Distributed Locking
|
|
|
|
### Cache Stampede Problem
|
|
|
|
When cache expires on high-traffic query:
|
|
1. Multiple requests see cache miss
|
|
2. All execute same expensive query simultaneously
|
|
3. Database overload
|
|
|
|
### Redis Distributed Locking Solution
|
|
|
|
cool-mysql's Redis cache includes distributed locking:
|
|
|
|
```go
|
|
db.EnableRedis(redisClient)
|
|
|
|
// Automatic distributed locking
|
|
err := db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users` WHERE `active` = 1", 10*time.Minute)
|
|
```
|
|
|
|
**How It Works:**
|
|
1. First request gets lock, executes query
|
|
2. Subsequent requests wait for lock
|
|
3. First request populates cache
|
|
4. Waiting requests get result from cache
|
|
5. Lock automatically released
|
|
|
|
### Lock Configuration
|
|
|
|
```bash
|
|
# Configure lock retry delay
|
|
export COOL_REDIS_LOCK_RETRY_DELAY=0.020 # 20ms between retries
|
|
```
|
|
|
|
### Without Distributed Locking (Memcached)
|
|
|
|
Memcached doesn't support distributed locking. Mitigate stampedes with:
|
|
|
|
1. **Probabilistic Early Expiration**
|
|
```go
|
|
// Refresh cache before expiration
|
|
func shouldRefresh(ttl time.Duration) bool {
|
|
// Refresh 10% of requests in last 10% of TTL
|
|
return rand.Float64() < 0.1
|
|
}
|
|
```
|
|
|
|
2. **Stale-While-Revalidate**
|
|
```go
|
|
// Serve stale data while refreshing
|
|
// (Requires custom cache implementation)
|
|
```
|
|
|
|
## Performance Optimization
|
|
|
|
### Cache Hit Rate Monitoring
|
|
|
|
```go
|
|
type CacheStats struct {
|
|
Hits int64
|
|
Misses int64
|
|
}
|
|
|
|
var stats CacheStats
|
|
|
|
// Wrap cache to track stats
|
|
type StatsCache struct {
|
|
underlying mysql.Cache
|
|
stats *CacheStats
|
|
}
|
|
|
|
func (c *StatsCache) Get(key string) ([]byte, bool) {
|
|
val, ok := c.underlying.Get(key)
|
|
if ok {
|
|
atomic.AddInt64(&c.stats.Hits, 1)
|
|
} else {
|
|
atomic.AddInt64(&c.stats.Misses, 1)
|
|
}
|
|
return val, ok
|
|
}
|
|
|
|
// Use stats cache
|
|
statsCache := &StatsCache{
|
|
underlying: mysql.NewRedisCache(redisClient),
|
|
stats: &stats,
|
|
}
|
|
db.UseCache(statsCache)
|
|
|
|
// Check cache performance
|
|
hitRate := float64(stats.Hits) / float64(stats.Hits + stats.Misses)
|
|
fmt.Printf("Cache hit rate: %.2f%%\n", hitRate*100)
|
|
```
|
|
|
|
### Optimizing Cache Keys
|
|
|
|
cool-mysql generates cache keys from query + parameters. Optimize by:
|
|
|
|
1. **Normalizing Queries**
|
|
```go
|
|
// BAD: Different queries, same intent
|
|
db.Select(&users, "SELECT * FROM `users` WHERE `id` = @@id", ttl, params)
|
|
db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users` WHERE `id` = @@id", ttl, params)
|
|
// ^ Different cache keys due to whitespace
|
|
|
|
// GOOD: Consistent formatting
|
|
const userByIDQuery = "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users` WHERE `id` = @@id"
|
|
db.Select(&users, userByIDQuery, ttl, params)
|
|
```
|
|
|
|
2. **Parameter Ordering**
|
|
```go
|
|
// Parameter order doesn't matter - they're normalized
|
|
db.Select(&users, query, ttl,
|
|
mysql.Params{"status": "active", "age": 18})
|
|
db.Select(&users, query, ttl,
|
|
mysql.Params{"age": 18, "status": "active"})
|
|
// ^ Same cache key
|
|
```
|
|
|
|
### Memory Usage Optimization
|
|
|
|
```go
|
|
// For memory-constrained environments
|
|
// Use shorter TTLs to reduce memory usage
|
|
db.UseCache(mysql.NewWeakCache())
|
|
err := db.Select(&users, "SELECT `id`, `name`, `email`, `age`, `active`, `created_at`, `updated_at` FROM `users`",
|
|
1*time.Minute) // Short TTL = less memory
|
|
|
|
// Or use Redis with maxmemory policy
|
|
// redis.conf:
|
|
// maxmemory 100mb
|
|
// maxmemory-policy allkeys-lru
|
|
```
|
|
|
|
### Network Latency Optimization
|
|
|
|
```go
|
|
// Minimize Redis roundtrips with pipelining
|
|
// (Requires custom cache implementation)
|
|
|
|
// Or use MultiCache for local-first
|
|
db.UseCache(mysql.NewMultiCache(
|
|
mysql.NewWeakCache(), // Fast local first
|
|
mysql.NewRedisCache(redisClient), // Fallback to Redis
|
|
))
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### 1. Match TTL to Data Volatility
|
|
|
|
```go
|
|
// Frequently changing - short TTL or no cache
|
|
db.Select(&liveData, query, 0)
|
|
|
|
// Rarely changing - long TTL
|
|
db.Select(&refData, query, 24*time.Hour)
|
|
```
|
|
|
|
### 2. Use SelectWrites After Writes
|
|
|
|
```go
|
|
// Write
|
|
db.Insert("users", user)
|
|
|
|
// Read with consistency
|
|
db.SelectWrites(&user, query, 0, params)
|
|
```
|
|
|
|
### 3. Cache High-Traffic Queries
|
|
|
|
```go
|
|
// Identify expensive queries
|
|
// Use longer TTLs for high-traffic, expensive queries
|
|
db.Select(&results, expensiveQuery, 30*time.Minute)
|
|
```
|
|
|
|
### 4. Don't Over-Cache
|
|
|
|
```go
|
|
// Don't cache everything - adds complexity
|
|
// Only cache queries that benefit from caching:
|
|
// - Expensive to compute
|
|
// - Frequently accessed
|
|
// - Tolerates staleness
|
|
```
|
|
|
|
### 5. Monitor Cache Performance
|
|
|
|
```go
|
|
// Track hit rates
|
|
// Tune TTLs based on metrics
|
|
// Remove caching from low-hit-rate queries
|
|
```
|
|
|
|
### 6. Use MultiCache for Best Performance
|
|
|
|
```go
|
|
// Production setup
|
|
db.UseCache(mysql.NewMultiCache(
|
|
mysql.NewWeakCache(), // L1: Fast
|
|
mysql.NewRedisCache(redisClient), // L2: Shared
|
|
))
|
|
```
|
|
|
|
### 7. Handle Cache Failures Gracefully
|
|
|
|
```go
|
|
// Cache failures should fallback to database
|
|
// cool-mysql handles this automatically
|
|
// Even if Redis is down, queries still work
|
|
```
|
|
|
|
### 8. Consider Cache Warming
|
|
|
|
```go
|
|
// Pre-populate cache for known hot queries
|
|
func warmCache(db *mysql.Database) {
|
|
db.Select(&refData, "SELECT `id`, `name`, `code` FROM `countries`", 24*time.Hour)
|
|
db.Select(&config, "SELECT `key`, `value` FROM `config`", time.Hour)
|
|
}
|
|
```
|
|
|
|
### 9. Use Appropriate Cache for Environment
|
|
|
|
```go
|
|
// Development
|
|
db.UseCache(mysql.NewWeakCache())
|
|
|
|
// Production
|
|
db.EnableRedis(redisClient) // Distributed locking + sharing
|
|
```
|
|
|
|
### 10. Document Cache TTLs
|
|
|
|
```go
|
|
const (
|
|
// Cache TTLs
|
|
UserProfileTTL = 10 * time.Minute // User data changes moderately
|
|
ProductCatalogTTL = 30 * time.Minute // Products updated infrequently
|
|
AnalyticsTTL = time.Hour // Analytics can be stale
|
|
NoCache = 0 // Real-time data
|
|
)
|
|
|
|
db.Select(&user, query, UserProfileTTL, params)
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### High Cache Miss Rate
|
|
|
|
**Symptoms**: Low hit rate, high database load
|
|
|
|
**Solutions:**
|
|
- Increase TTL
|
|
- Check if queries are identical (whitespace, parameter names)
|
|
- Verify cache is configured correctly
|
|
- Check if queries are actually repeated
|
|
|
|
### Cache Stampede
|
|
|
|
**Symptoms**: Periodic database spikes, slow response during cache expiration
|
|
|
|
**Solutions:**
|
|
- Use Redis with distributed locking
|
|
- Implement probabilistic early refresh
|
|
- Increase TTL to reduce expiration frequency
|
|
|
|
### Memory Issues
|
|
|
|
**Symptoms**: High memory usage, OOM errors
|
|
|
|
**Solutions:**
|
|
- Reduce TTLs
|
|
- Use Redis instead of in-memory
|
|
- Configure Redis maxmemory policy
|
|
- Cache fewer queries
|
|
|
|
### Stale Data
|
|
|
|
**Symptoms**: Users see outdated information
|
|
|
|
**Solutions:**
|
|
- Reduce TTL
|
|
- Use SelectWrites after modifications
|
|
- Implement cache invalidation
|
|
- Consider if data should be cached at all
|