Files
2025-11-30 08:44:54 +08:00

5.7 KiB

slug
slug
/query-interfaces-of-api

query - vector query

The query() method is used to perform vector similarity search to find the most similar documents to the query vector.

:::info

This interface is only available when using the Client. For more information about the Client, see Client.

:::

Prerequisites

  • You have installed pyseekdb. For more information about how to install pyseekdb, see Get Started.

  • You have connected to the database. For more information about how to connect to the database, see Client.

  • You have created a collection and inserted data. For more information about how to create a collection and insert data, see create_collection - Create a collection and add - Insert data.

Request parameters

query()
Parameter Value type Required Description Example value
query_embeddings List[float] or List[List[float]] Yes A single vector or a list of vectors for batch queries; if provided, it will be used directly (ignoring embedding_function); if not provided, query_text must be provided, and the collection must have an embedding_function [1.0, 2.0, 3.0]
query_texts str or List[str] No A single text or a list of texts for query; if provided, it will be used directly (ignoring embedding_function); if not provided, documents must be provided, and the collection must have an embedding_function ["my query text"]
n_results int Yes The number of similar results to return, default is 10 3
where dict No Metadata filter conditions. {"category": {"$eq": "AI"}}
where_document dict No Document filter conditions. {"$contains": "machine"}
include List[str] No List of fields to include: ["documents", "metadatas", "embeddings"] ["documents", "metadatas", "embeddings"]

:::info

The embedding_function used is associated with the collection (set during create_collection() or get_collection()). You cannot override it for each operation.

:::

Request example

import pyseekdb

# Create a client
client = pyseekdb.Client()

collection = client.get_collection("my_collection")
collection1 = client.get_collection("my_collection1")

# Basic vector similarity query (embedding_function not used)
results = collection.query(
    query_embeddings=[1.0, 2.0, 3.0],
    n_results=3
)

# Iterate over results
for i in range(len(results["ids"][0])):
    print(f"ID: {results['ids'][0][i]}, Distance: {results['distances'][0][i]}")
    if results.get("documents"):
        print(f"Document: {results['documents'][0][i]}")
    if results.get("metadatas"):
        print(f"Metadata: {results['metadatas'][0][i]}")

# Query by texts - vectors auto-generated by embedding_function
# Requires: collection must have embedding_function set
results = collection1.query(
    query_texts=["my query text"],
    n_results=10
)
# The collection's embedding_function will automatically convert query_texts to query_embeddings

# Query by multiple texts (batch query)
results = collection1.query(
    query_texts=["query text 1", "query text 2"],
    n_results=5
)
# Returns dict with lists of lists, one list per query text
for i in range(len(results["ids"])):
    print(f"Query {i}: {len(results['ids'][i])} results")

# Query with metadata filter (using query_texts)
results = collection1.query(
    query_texts=["AI research"],
    where={"category": {"$eq": "AI"}},
    n_results=5
)

# Query with comparison operator (using query_texts)
results = collection1.query(
    query_texts=["machine learning"],
    where={"score": {"$gte": 90}},
    n_results=5
)

# Query with document filter (using query_texts)
results = collection1.query(
    query_texts=["neural networks"],
    where_document={"$contains": "machine learning"},
    n_results=5
)

# Query with combined filters (using query_texts)
results = collection1.query(
    query_texts=["AI research"],
    where={"category": {"$eq": "AI"}, "score": {"$gte": 90}},
    where_document={"$contains": "machine"},
    n_results=5
)

# Query with multiple vectors (batch query)
results = collection.query(
    query_embeddings=[[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]],
    n_results=2
)
# Returns dict with lists of lists, one list per query vector
for i in range(len(results["ids"])):
    print(f"Query {i}: {len(results['ids'][i])} results")

# Query with specific fields
results = collection.query(
    query_embeddings=[1.0, 2.0, 3.0],
    include=["documents", "metadatas", "embeddings"],
    n_results=3
)

Return parameters

Parameter Value type Required Description Example value
ids List[List[str]] Yes The IDs to add or modify. It can be a single ID or an array of IDs. item1
embeddings [List[List[List[float]]]] No The vectors; if provided, it will be used directly (ignoring embedding_function), if not provided, documents can be provided to generate vectors automatically. [0.1, 0.2, 0.3]
documents [List[List[Dict]]] No The documents. If vectors are not provided, documents will be converted to vectors using the embedding_function of the collection. "Document text"
metadatas [List[List[Dict]]] No The metadata. {"category": "AI"}
distances [List[List[Dict]]] No {"category": "AI"}

Return example

ID: vec1, Distance: 0.0
Document: None
Metadata: {}
ID: vec2, Distance: 0.025368153802923787
Document: None
Metadata: {}
Query 0: 4 results
Query 1: 4 results
Query 0: 2 results
Query 1: 2 results