--- slug: /query-interfaces-of-api --- # query - vector query The `query()` method is used to perform vector similarity search to find the most similar documents to the query vector. :::info This interface is only available when using the Client. For more information about the Client, see [Client](../50.client.md). ::: ## Prerequisites * You have installed pyseekdb. For more information about how to install pyseekdb, see [Get Started](../../10.pyseekdb-sdk/10.pyseekdb-sdk-get-started.md). * You have connected to the database. For more information about how to connect to the database, see [Client](../50.client.md). * You have created a collection and inserted data. For more information about how to create a collection and insert data, see [create_collection - Create a collection](../200.collection/100.create-collection-of-api.md) and [add - Insert data](../300.dml/200.add-data-of-api.md). ## Request parameters ```python query() ``` |Parameter|Value type|Required|Description|Example value| |---|---|---|---|---| |`query_embeddings`|List[float] or List[List[float]] |Yes|A single vector or a list of vectors for batch queries; if provided, it will be used directly (ignoring `embedding_function`); if not provided, `query_text` must be provided, and the `collection` must have an `embedding_function`|[1.0, 2.0, 3.0]| |`query_texts`|str or List[str]|No|A single text or a list of texts for query; if provided, it will be used directly (ignoring `embedding_function`); if not provided, `documents` must be provided, and the `collection` must have an `embedding_function`|["my query text"]| |`n_results`|int|Yes|The number of similar results to return, default is 10|3| |`where`|dict |No|Metadata filter conditions.|`{"category": {"$eq": "AI"}}`| |`where_document`|dict|No|Document filter conditions.|`{"$contains": "machine"}`| |`include`|List[str]|No|List of fields to include: `["documents", "metadatas", "embeddings"]`|["documents", "metadatas", "embeddings"]| :::info The `embedding_function` used is associated with the collection (set during `create_collection()` or `get_collection()`). You cannot override it for each operation. ::: ## Request example ```python import pyseekdb # Create a client client = pyseekdb.Client() collection = client.get_collection("my_collection") collection1 = client.get_collection("my_collection1") # Basic vector similarity query (embedding_function not used) results = collection.query( query_embeddings=[1.0, 2.0, 3.0], n_results=3 ) # Iterate over results for i in range(len(results["ids"][0])): print(f"ID: {results['ids'][0][i]}, Distance: {results['distances'][0][i]}") if results.get("documents"): print(f"Document: {results['documents'][0][i]}") if results.get("metadatas"): print(f"Metadata: {results['metadatas'][0][i]}") # Query by texts - vectors auto-generated by embedding_function # Requires: collection must have embedding_function set results = collection1.query( query_texts=["my query text"], n_results=10 ) # The collection's embedding_function will automatically convert query_texts to query_embeddings # Query by multiple texts (batch query) results = collection1.query( query_texts=["query text 1", "query text 2"], n_results=5 ) # Returns dict with lists of lists, one list per query text for i in range(len(results["ids"])): print(f"Query {i}: {len(results['ids'][i])} results") # Query with metadata filter (using query_texts) results = collection1.query( query_texts=["AI research"], where={"category": {"$eq": "AI"}}, n_results=5 ) # Query with comparison operator (using query_texts) results = collection1.query( query_texts=["machine learning"], where={"score": {"$gte": 90}}, n_results=5 ) # Query with document filter (using query_texts) results = collection1.query( query_texts=["neural networks"], where_document={"$contains": "machine learning"}, n_results=5 ) # Query with combined filters (using query_texts) results = collection1.query( query_texts=["AI research"], where={"category": {"$eq": "AI"}, "score": {"$gte": 90}}, where_document={"$contains": "machine"}, n_results=5 ) # Query with multiple vectors (batch query) results = collection.query( query_embeddings=[[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]], n_results=2 ) # Returns dict with lists of lists, one list per query vector for i in range(len(results["ids"])): print(f"Query {i}: {len(results['ids'][i])} results") # Query with specific fields results = collection.query( query_embeddings=[1.0, 2.0, 3.0], include=["documents", "metadatas", "embeddings"], n_results=3 ) ``` ## Return parameters |Parameter|Value type|Required|Description|Example value| |---|---|---|---|---| |`ids`|List[List[str]] |Yes|The IDs to add or modify. It can be a single ID or an array of IDs.|item1| |`embeddings`|[List[List[List[float]]]]|No|The vectors; if provided, it will be used directly (ignoring `embedding_function`), if not provided, `documents` can be provided to generate vectors automatically.|[0.1, 0.2, 0.3]| |`documents`|[List[List[Dict]]]|No|The documents. If `vectors` are not provided, `documents` will be converted to vectors using the `embedding_function` of the collection.| "Document text"| |`metadatas`|[List[List[Dict]]]|No|The metadata.|`{"category": "AI"}`| |`distances`|[List[List[Dict]]]|No| |`{"category": "AI"}`| ## Return example ```python ID: vec1, Distance: 0.0 Document: None Metadata: {} ID: vec2, Distance: 0.025368153802923787 Document: None Metadata: {} Query 0: 4 results Query 1: 4 results Query 0: 2 results Query 1: 2 results ``` ## Related operations * [get - Retrieve](300.get-interfaces-of-api.md) * [Hybrid search](400.hybrid-search-of-api.md) * [Operators](500.filter-operators-of-api.md)