Initial commit
This commit is contained in:
12
.claude-plugin/plugin.json
Normal file
12
.claude-plugin/plugin.json
Normal file
@@ -0,0 +1,12 @@
|
||||
{
|
||||
"name": "research-task",
|
||||
"description": "Deep Dive Research",
|
||||
"version": "1.0.0",
|
||||
"author": {
|
||||
"name": "Matthew Pazaryna",
|
||||
"email": "[email protected]"
|
||||
},
|
||||
"commands": [
|
||||
"./commands"
|
||||
]
|
||||
}
|
||||
179
commands/task.md
Normal file
179
commands/task.md
Normal file
@@ -0,0 +1,179 @@
|
||||
---
|
||||
description: Perform research for a specific task and return structured findings (called by issue agent)
|
||||
category: dev
|
||||
difficulty: beginner
|
||||
estimated_time: instant
|
||||
allowed-tools: WebFetch, WebSearch, Read, Bash
|
||||
version: 1.0.0
|
||||
---
|
||||
|
||||
# Research Task Agent
|
||||
|
||||
Specialized command for performing research on technical topics. Returns structured findings to the calling agent.
|
||||
|
||||
## Variables
|
||||
|
||||
RESEARCH_QUESTIONS: (required - list of questions to answer)
|
||||
TASK_CONTEXT: (required - why this research matters)
|
||||
SUGGESTED_APPROACH: (optional - where to look)
|
||||
|
||||
## Workflow
|
||||
|
||||
### Step 1: Understand Research Scope
|
||||
|
||||
Parse the research questions:
|
||||
- Primary questions (must answer)
|
||||
- Secondary questions (nice to answer)
|
||||
- Context (why it matters)
|
||||
|
||||
### Step 2: Identify Information Sources
|
||||
|
||||
Based on research questions, determine sources:
|
||||
- **Official documentation** (e.g., Apple developer docs, API references)
|
||||
- **Technical articles** (e.g., developer blogs, Medium)
|
||||
- **Code examples** (e.g., GitHub, Stack Overflow)
|
||||
- **Community discussions** (e.g., forums, Reddit)
|
||||
- **Academic papers** (if deep technical topic)
|
||||
|
||||
### Step 3: Gather Information
|
||||
|
||||
For each source type:
|
||||
|
||||
**Documentation**:
|
||||
- Use WebFetch for official docs
|
||||
- Extract key concepts, APIs, limitations
|
||||
- Note version/compatibility requirements
|
||||
|
||||
**Code Examples**:
|
||||
- Search GitHub for relevant implementations
|
||||
- Look for patterns and best practices
|
||||
- Identify common pitfalls
|
||||
|
||||
**Community Knowledge**:
|
||||
- WebSearch for recent discussions
|
||||
- Find real-world experiences
|
||||
- Identify gotchas and workarounds
|
||||
|
||||
### Step 4: Synthesize Findings
|
||||
|
||||
Organize findings by research question:
|
||||
|
||||
For each question:
|
||||
- **Answer**: Direct answer if found
|
||||
- **Details**: Supporting information
|
||||
- **Sources**: Where information came from
|
||||
- **Confidence**: How certain (high/medium/low)
|
||||
- **Caveats**: Limitations or conditions
|
||||
|
||||
### Step 5: Create Recommendations
|
||||
|
||||
Based on findings:
|
||||
- **Recommended approach**: What to do
|
||||
- **Rationale**: Why this approach
|
||||
- **Alternatives**: Backup options
|
||||
- **Risks**: What to watch out for
|
||||
- **Next steps**: How to proceed
|
||||
|
||||
### Step 6: Return Structured Findings
|
||||
|
||||
Output format (returned to calling agent):
|
||||
|
||||
```markdown
|
||||
## Research Findings for: {TASK_TITLE}
|
||||
|
||||
### Question 1: {QUESTION}
|
||||
**Answer**: {DIRECT_ANSWER}
|
||||
|
||||
**Details**:
|
||||
{SUPPORTING_INFORMATION}
|
||||
|
||||
**Sources**:
|
||||
- {SOURCE_1}
|
||||
- {SOURCE_2}
|
||||
|
||||
**Confidence**: High | Medium | Low
|
||||
**Caveats**: {LIMITATIONS}
|
||||
|
||||
---
|
||||
|
||||
### Question 2: {QUESTION}
|
||||
[Same structure]
|
||||
|
||||
---
|
||||
|
||||
## Recommendations
|
||||
|
||||
### Approach
|
||||
{WHAT_TO_DO}
|
||||
|
||||
### Rationale
|
||||
{WHY}
|
||||
|
||||
### Risks
|
||||
- {RISK_1}: {mitigation}
|
||||
- {RISK_2}: {mitigation}
|
||||
|
||||
### Alternatives
|
||||
1. {ALTERNATIVE_1}: {when to use}
|
||||
2. {ALTERNATIVE_2}: {when to use}
|
||||
|
||||
## Code Examples
|
||||
|
||||
```{language}
|
||||
{EXAMPLE_CODE}
|
||||
```
|
||||
|
||||
## Open Questions
|
||||
|
||||
Unanswered questions:
|
||||
- {OPEN_Q1}
|
||||
- {OPEN_Q2}
|
||||
|
||||
## References
|
||||
|
||||
- [{Title}]({URL})
|
||||
- [{Title}]({URL})
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Example Invocation
|
||||
|
||||
Called by `/research-task` when task type = research:
|
||||
|
||||
```
|
||||
Input:
|
||||
- RESEARCH_QUESTIONS:
|
||||
* "What NaturalLanguage framework APIs are available?"
|
||||
* "Can NER extract job titles and companies?"
|
||||
* "What's the accuracy for career narratives?"
|
||||
|
||||
- TASK_CONTEXT:
|
||||
"Stage 1 TELL requires extracting career events from CV text"
|
||||
|
||||
- SUGGESTED_APPROACH:
|
||||
"Check Apple docs, test with sample CV text"
|
||||
|
||||
Output:
|
||||
Structured findings with answers, code examples, recommendations
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Design Principles
|
||||
|
||||
1. **Single Responsibility**: Only does research, doesn't write files
|
||||
2. **Returns Data**: Outputs findings as structured text to calling agent
|
||||
3. **Evidence-Based**: All claims backed by sources
|
||||
4. **Actionable**: Provides clear recommendations
|
||||
5. **Honest**: Admits when information not found or uncertain
|
||||
|
||||
---
|
||||
|
||||
## Notes
|
||||
|
||||
- This agent is typically called by `/paz:plan:issue`, not directly by user
|
||||
- If called directly, will still work and output findings to console
|
||||
- Uses WebFetch for documentation, WebSearch for discussions
|
||||
- May read local files if researching internal codebase
|
||||
- Research is cached naturally by WebFetch (15-minute cache)
|
||||
45
plugin.lock.json
Normal file
45
plugin.lock.json
Normal file
@@ -0,0 +1,45 @@
|
||||
{
|
||||
"$schema": "internal://schemas/plugin.lock.v1.json",
|
||||
"pluginId": "gh:mpazaryna/claude-toolkit:plugins/research-task",
|
||||
"normalized": {
|
||||
"repo": null,
|
||||
"ref": "refs/tags/v20251128.0",
|
||||
"commit": "d51773dd879907815f03d3fa53d8fba98024183f",
|
||||
"treeHash": "3534693686bcd634e8dc3c7af4b650340eccdab2fa62110b638750173df44ce9",
|
||||
"generatedAt": "2025-11-28T10:27:11.604893Z",
|
||||
"toolVersion": "publish_plugins.py@0.2.0"
|
||||
},
|
||||
"origin": {
|
||||
"remote": "git@github.com:zhongweili/42plugin-data.git",
|
||||
"branch": "master",
|
||||
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
|
||||
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
|
||||
},
|
||||
"manifest": {
|
||||
"name": "research-task",
|
||||
"description": "Deep Dive Research",
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"content": {
|
||||
"files": [
|
||||
{
|
||||
"path": "README.md",
|
||||
"sha256": "4a04b5c9949e45d73274eac59d955b36b16a4f4206ed6e08c505a893d6938ccb"
|
||||
},
|
||||
{
|
||||
"path": ".claude-plugin/plugin.json",
|
||||
"sha256": "2fbb3741d0dc33f7991f93a4b138273510143fc66692e022cedba800d496e0d9"
|
||||
},
|
||||
{
|
||||
"path": "commands/task.md",
|
||||
"sha256": "2b4bff6a1978b3fa456fd9a7d6944f66c6c39c805611c90b3264688e6581ff96"
|
||||
}
|
||||
],
|
||||
"dirSha256": "3534693686bcd634e8dc3c7af4b650340eccdab2fa62110b638750173df44ce9"
|
||||
},
|
||||
"security": {
|
||||
"scannedAt": null,
|
||||
"scannerVersion": null,
|
||||
"flags": []
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user