Files
gh-mhattingpete-claude-skil…/skills/code-execution/SKILL.md
2025-11-30 08:40:11 +08:00

3.1 KiB

name, description
name description
code-execution Execute Python code locally with marketplace API access for 90%+ token savings on bulk operations. Activates when user requests bulk operations (10+ files), complex multi-step workflows, iterative processing, or mentions efficiency/performance.

Code Execution

Execute Python locally with API access. 90-99% token savings for bulk operations.

When to Use

  • Bulk operations (10+ files)
  • Complex multi-step workflows
  • Iterative processing across many files
  • User mentions efficiency/performance

How to Use

Use direct Python imports in Claude Code:

from execution_runtime import fs, code, transform, git

# Code analysis (metadata only!)
functions = code.find_functions('app.py', pattern='handle_.*')

# File operations
code_block = fs.copy_lines('source.py', 10, 20)
fs.paste_code('target.py', 50, code_block)

# Bulk transformations
result = transform.rename_identifier('.', 'oldName', 'newName', '**/*.py')

# Git operations
git.git_add(['.'])
git.git_commit('feat: refactor code')

If not installed: Run ~/.claude/plugins/marketplaces/mhattingpete-claude-skills/execution-runtime/setup.sh

Available APIs

  • Filesystem (fs): copy_lines, paste_code, search_replace, batch_copy
  • Code Analysis (code): find_functions, find_classes, analyze_dependencies - returns METADATA only!
  • Transformations (transform): rename_identifier, remove_debug_statements, batch_refactor
  • Git (git): git_status, git_add, git_commit, git_push

Pattern

  1. Analyze locally (metadata only, not source)
  2. Process locally (all operations in execution)
  3. Return summary (not data!)

Examples

Bulk refactor (50 files):

from execution_runtime import transform
result = transform.rename_identifier('.', 'oldName', 'newName', '**/*.py')
# Returns: {'files_modified': 50, 'total_replacements': 247}

Extract functions:

from execution_runtime import code, fs

functions = code.find_functions('app.py', pattern='.*_util$')  # Metadata only!
for func in functions:
    code_block = fs.copy_lines('app.py', func['start_line'], func['end_line'])
    fs.paste_code('utils.py', -1, code_block)

result = {'functions_moved': len(functions)}

Code audit (100 files):

from execution_runtime import code
from pathlib import Path

files = list(Path('.').glob('**/*.py'))
issues = []

for file in files:
    deps = code.analyze_dependencies(str(file))  # Metadata only!
    if deps.get('complexity', 0) > 15:
        issues.append({'file': str(file), 'complexity': deps['complexity']})

result = {'files_audited': len(files), 'high_complexity': len(issues)}

Best Practices

Return summaries, not data Use code_analysis (returns metadata, not source) Batch operations Handle errors, return error count

Don't return all code to context Don't read full source when you need metadata Don't process files one by one

Token Savings

Files Traditional Execution Savings
10 5K tokens 500 90%
50 25K tokens 600 97.6%
100 150K tokens 1K 99.3%