Files
gh-lyndonkl-claude/skills/expected-value/resources/template.md
2025-11-30 08:38:26 +08:00

339 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Expected Value Templates
Quick-start templates for decision framing, outcome identification, probability estimation, payoff quantification, EV calculation, and sensitivity analysis.
## Workflow
```
Expected Value Analysis Progress:
- [ ] Step 1: Define decision and alternatives
- [ ] Step 2: Identify possible outcomes
- [ ] Step 3: Estimate probabilities
- [ ] Step 4: Estimate payoffs (values)
- [ ] Step 5: Calculate expected values
- [ ] Step 6: Interpret and adjust for risk preferences
```
**Step 1: Define decision and alternatives** → Use [Decision Framing Template](#decision-framing-template)
**Step 2: Identify possible outcomes** → Use [Outcome Identification Template](#outcome-identification-template)
**Step 3: Estimate probabilities** → Use [Probability Estimation Template](#probability-estimation-template)
**Step 4: Estimate payoffs** → Use [Payoff Quantification Template](#payoff-quantification-template)
**Step 5: Calculate expected values** → Use [EV Calculation Template](#ev-calculation-template)
**Step 6: Interpret and adjust for risk** → Use [Risk Adjustment Template](#risk-adjustment-template) and [Sensitivity Analysis Template](#sensitivity-analysis-template)
---
## Decision Framing Template
**Decision to be made**: [Clear statement of the choice]
**Context**: [Why are you making this decision? What's the deadline? What constraints exist?]
**Alternatives** (mutually exclusive options):
1. **[Alternative 1]**: [Brief description]
2. **[Alternative 2]**: [Brief description]
3. **[Alternative 3]**: [Brief description, if applicable]
4. **Do nothing / status quo**: [Always consider baseline]
**Success criteria**: [How will you know if this was a good decision? What are you optimizing for?]
**Assumptions**:
- [Key assumption 1]
- [Key assumption 2]
- [Key assumption 3]
**Out of scope** (not considering):
- [Factor 1 you're explicitly not modeling]
- [Factor 2]
---
## Outcome Identification Template
For each alternative, identify 3-5 possible outcomes (scenarios).
### Alternative: [Name]
**Outcome 1: Best case**
- **Description**: [What happens in optimistic scenario?]
- **Key drivers**: [What needs to go right?]
- **Likelihood indicator**: [Rough sense: common, uncommon, rare?]
**Outcome 2: Base case**
- **Description**: [What happens in most likely scenario?]
- **Key drivers**: [What's the typical path?]
- **Likelihood indicator**: [Should be most probable]
**Outcome 3: Worst case**
- **Description**: [What happens in pessimistic scenario?]
- **Key drivers**: [What needs to go wrong?]
- **Likelihood indicator**: [How bad could it get?]
**Outcome 4: [Other scenario, if needed]**
- **Description**:
- **Key drivers**:
- **Likelihood indicator**:
**Check**: Do these outcomes cover the full range of possibilities? Are they mutually exclusive (no overlap)?
---
## Probability Estimation Template
Estimate probability for each outcome using multiple methods, then reconcile.
### Outcome: [Name]
| Method | Estimate | Notes |
|--------|----------|-------|
| **Base rates** (reference class) | [X%] | [Similar situations: N cases, frequency] |
| **Inside view** (causal model) | [Y%] | [Key factors: p_A × p_B × p_C] |
| **Expert judgment** | [Z%] | [Average of expert estimates] |
| **Data/model** | [W%] | [Forecast, confidence interval] |
**Final estimate**: [Weighted average] **Confidence**: [Range if uncertain]
**All outcomes** (must sum to 1.0):
- Outcome 1: [p₁], Outcome 2: [p₂], Outcome 3: [p₃]. **Total**: [p₁+p₂+p₃ = 1.0 ✓]
---
## Payoff Quantification Template
### Outcome: [Name]
**Monetary**: Revenue [+$X], Cost [-$Y], Savings [+$Z], Opp. cost [-$W]. **Net**: [Sum]
**Non-monetary** (convert to $ or utility): Time [X hrs × $rate], Reputation [$Z], Learning [$W], Strategic [qualitative or $], Morale [qualitative or $]
**Time horizon**: [When?] **Discount rate**: [r%/yr if multi-period]
**NPV** (if multi-period): Yr0 [$X/(1+r)⁰], Yr1 [$Y/(1+r)¹], Yr2 [$Z/(1+r)²]. **Total NPV**: [Sum]
**Total Payoff**: [$ or utility] **Uncertainty**: [Point estimate or range: low-high]
---
## EV Calculation Template
Calculate expected value for each alternative.
### Alternative: [Name]
| Outcome | Probability (p) | Payoff (v) | p × v |
|---------|----------------|-----------|-------|
| [Outcome 1] | [p₁] | [v₁] | [p₁ × v₁] |
| [Outcome 2] | [p₂] | [v₂] | [p₂ × v₂] |
| [Outcome 3] | [p₃] | [v₃] | [p₃ × v₃] |
| **Total** | **1.0** | | **EV = Σ (p × v)** |
**Expected Value**: [EV = p₁×v₁ + p₂×v₂ + p₃×v₃]
**Variance**: Var = Σ (pᵢ × (vᵢ - EV)²)
- (v₁ - EV)² × p₁ = [X]
- (v₂ - EV)² × p₂ = [Y]
- (v₃ - EV)² × p₃ = [Z]
- **Variance** = [X + Y + Z]
**Standard Deviation**: σ = √Var = [σ]
**Coefficient of Variation**: CV = σ / EV = [CV] (lower = better risk-adjusted return)
### Comparison Across Alternatives
| Alternative | EV | σ (risk) | CV | Rank by EV |
|-------------|-------|----------|-----|------------|
| [Alt 1] | [EV₁] | [σ₁] | [CV₁] | [1] |
| [Alt 2] | [EV₂] | [σ₂] | [CV₂] | [2] |
| [Alt 3] | [EV₃] | [σ₃] | [CV₃] | [3] |
**Preliminary recommendation** (based on EV): [Highest EV alternative]
---
## Sensitivity Analysis Template
Test how sensitive the decision is to changes in key assumptions.
### One-Way Sensitivity (vary one variable at a time)
**Variable**: Probability of [Outcome X]
| p(Outcome X) | EV(Alt 1) | EV(Alt 2) | Best choice |
|-------------|-----------|-----------|-------------|
| [Low: p-20%] | [EV] | [EV] | [Alt] |
| [Base: p] | [EV] | [EV] | [Alt] |
| [High: p+20%] | [EV] | [EV] | [Alt] |
**Breakeven**: At what probability does decision flip? Solve: EV(Alt 1) = EV(Alt 2).
**Variable**: Payoff of [Outcome Y]
| v(Outcome Y) | EV(Alt 1) | EV(Alt 2) | Best choice |
|-------------|-----------|-----------|-------------|
| [Low: v-30%] | [EV] | [EV] | [Alt] |
| [Base: v] | [EV] | [EV] | [Alt] |
| [High: v+30%] | [EV] | [EV] | [Alt] |
### Tornado Diagram (which variables have most impact on EV?)
| Variable | Range tested | Impact on EV (swing) | Rank |
|----------|-------------|---------------------|------|
| [Var 1] | [low-high] | [±$X] | [1 (highest impact)] |
| [Var 2] | [low-high] | [±$Y] | [2] |
| [Var 3] | [low-high] | [±$Z] | [3] |
**Interpretation**: Focus on high-impact variables. Get better estimates for top 2-3.
### Scenario Analysis (vary multiple variables together)
| Scenario | Assumptions | EV(Alt 1) | EV(Alt 2) | Best |
|----------|------------|-----------|-----------|------|
| **Optimistic** | [High demand, low cost, no delays] | [EV] | [EV] | [Alt] |
| **Base** | [Expected values] | [EV] | [EV] | [Alt] |
| **Pessimistic** | [Low demand, high cost, delays] | [EV] | [EV] | [Alt] |
**Robustness**: Does the decision hold across scenarios? If different winners in different scenarios → decision is fragile, more info needed.
---
## Risk Adjustment Template
**Risk profile**: Risk-neutral / Risk-averse / Risk-seeking? One-shot or repeated decision?
**Utility function** (if risk-averse): U(x) = x (neutral), √x (moderate aversion), log(x) (strong aversion)
### Expected Utility (if risk-averse)
| Outcome | p | v | U(v) | p × U(v) |
|---------|---|---|------|----------|
| [Out 1] | [p₁] | [v₁] | [U(v₁)] | [p₁ × U(v₁)] |
| [Out 2] | [p₂] | [v₂] | [U(v₂)] | [p₂ × U(v₂)] |
| **Total** | **1.0** | | | **EU = Σ** |
**Certainty Equivalent**: CE = U⁻¹(EU). **Risk Premium**: EV - CE.
**Non-monetary factors**: Strategic value [$/qualitative], Alignment with mission [score 1-5], Regret [low/med/high]
**Recommendation**: Highest EV [Alt X], Highest EU [Alt Y], **Final choice**: [Alt Z with rationale]
---
## Decision Tree Template
For sequential decisions (make choice, observe outcome, make another choice).
### Tree Structure
```
[Decision 1] → [Outcome A] → [Decision 2a] → [Outcome C]
→ [Outcome D]
→ [Outcome B] → [Decision 2b] → [Outcome E]
→ [Outcome F]
```
### Fold-Back Induction (work backwards from end)
**Step 1: Calculate EV at terminal nodes** (final outcomes)
- Outcome C: [payoff = $X]
- Outcome D: [payoff = $Y]
- Outcome E: [payoff = $Z]
- Outcome F: [payoff = $W]
**Step 2: Calculate EV at Decision 2a**
- If choose path to C: [p(C) × $X]
- If choose path to D: [p(D) × $Y]
- **Optimal Decision 2a**: [Choose whichever has higher EV]
- **EV(Decision 2a)**: [max of the two]
**Step 3: Calculate EV at Decision 2b**
- If choose path to E: [p(E) × $Z]
- If choose path to F: [p(F) × $W]
- **Optimal Decision 2b**: [Choose whichever has higher EV]
- **EV(Decision 2b)**: [max of the two]
**Step 4: Calculate EV at Decision 1**
- If choose path to A: [p(A) × EV(Decision 2a)]
- If choose path to B: [p(B) × EV(Decision 2b)]
- **Optimal Decision 1**: [Choose whichever has higher EV]
- **Overall EV**: [max of the two]
**Optimal Strategy**:
1. At Decision 1: [Choose A or B]
2. If A occurs, at Decision 2a: [Choose path to C or D]
3. If B occurs, at Decision 2b: [Choose path to E or F]
**Value of Information**: If you could know outcome before Decision 1, how much would that be worth?
- EVPI = EV(with perfect info) - EV(current decision)
---
## Complete EV Analysis Template
**Decision**: [Name]
**Date**: [Date]
**Decision maker**: [Name/Team]
### 1. Decision Framing
**Alternatives**:
1. [Alt 1]
2. [Alt 2]
3. [Alt 3]
**Success criteria**: [What are you optimizing for?]
### 2. Outcomes and Probabilities
| Alternative | Outcome | Probability | Payoff | p × v |
|-------------|---------|------------|--------|-------|
| **[Alt 1]** | [Outcome 1] | [p₁] | [v₁] | [p₁ × v₁] |
| | [Outcome 2] | [p₂] | [v₂] | [p₂ × v₂] |
| | [Outcome 3] | [p₃] | [v₃] | [p₃ × v₃] |
| | **EV(Alt 1)** | | | **[EV₁]** |
| **[Alt 2]** | [Outcome 1] | [p₁] | [v₁] | [p₁ × v₁] |
| | [Outcome 2] | [p₂] | [v₂] | [p₂ × v₂] |
| | [Outcome 3] | [p₃] | [v₃] | [p₃ × v₃] |
| | **EV(Alt 2)** | | | **[EV₂]** |
### 3. Comparison
| Alternative | EV | σ (risk) | CV |
|-------------|-------|----------|-----|
| [Alt 1] | [EV₁] | [σ₁] | [CV₁] |
| [Alt 2] | [EV₂] | [σ₂] | [CV₂] |
**Highest EV**: [Alt X with EV = $Y]
### 4. Sensitivity Analysis
**Key assumptions**:
- [Assumption 1]: [If this changes by X%, decision flips? Yes/No]
- [Assumption 2]: [Breakeven value = ?]
**Robustness**: [Is decision robust across scenarios?]
### 5. Risk Adjustment
**Risk profile**: [One-shot or repeated? Risk-averse or neutral?]
**Recommendation**: [Alt X]
**Rationale**: [Why this choice given EV, risk, strategic factors?]
### 6. Action Plan
**Next steps**:
1. [Immediate action]
2. [Follow-up in X days/weeks]
3. [Decision review date]
**Contingencies**: [If Outcome Y occurs, we will...]