Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:34:38 +08:00
commit 95df785738
5 changed files with 138 additions and 0 deletions

View File

@@ -0,0 +1,13 @@
{
"name": "quantitative-trading",
"description": "Quantitative analysis, algorithmic trading strategies, financial modeling, portfolio risk management, and backtesting",
"version": "1.2.0",
"author": {
"name": "Seth Hobson",
"url": "https://github.com/wshobson"
},
"agents": [
"./plugins/quantitative-trading/agents/quant-analyst.md",
"./plugins/quantitative-trading/agents/risk-manager.md"
]
}

3
README.md Normal file
View File

@@ -0,0 +1,3 @@
# quantitative-trading
Quantitative analysis, algorithmic trading strategies, financial modeling, portfolio risk management, and backtesting

49
plugin.lock.json Normal file
View File

@@ -0,0 +1,49 @@
{
"$schema": "internal://schemas/plugin.lock.v1.json",
"pluginId": "gh:kivilaid/plugin-marketplace:plugins/quantitative-trading",
"normalized": {
"repo": null,
"ref": "refs/tags/v20251128.0",
"commit": "a0eafb29e8de74fe81bab270133e348df9671889",
"treeHash": "e9d6029aa26d114fed93b51150027ff17a4cb15a23b3606985cd9ed1fdd06cc9",
"generatedAt": "2025-11-28T10:19:50.290475Z",
"toolVersion": "publish_plugins.py@0.2.0"
},
"origin": {
"remote": "git@github.com:zhongweili/42plugin-data.git",
"branch": "master",
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
},
"manifest": {
"name": "quantitative-trading",
"description": "Quantitative analysis, algorithmic trading strategies, financial modeling, portfolio risk management, and backtesting",
"version": "1.2.0"
},
"content": {
"files": [
{
"path": "README.md",
"sha256": "6955b48a59b8d0d29b5bfe944520f2b17bff60113341d98b8608105865886ee5"
},
{
"path": "plugins/quantitative-trading/agents/quant-analyst.md",
"sha256": "fa81fc100a6ecfa08250f5dce3c6940fd354f97822ba5f97a88b3b37f82195fd"
},
{
"path": "plugins/quantitative-trading/agents/risk-manager.md",
"sha256": "de6b501770c7dad1c06703929084a157cb591bb6a290cd416cada3e37e5846e8"
},
{
"path": ".claude-plugin/plugin.json",
"sha256": "262c7953f20764dc7fa6fc12258e77d2c9e31800885b4284fbc857d7031d4c58"
}
],
"dirSha256": "e9d6029aa26d114fed93b51150027ff17a4cb15a23b3606985cd9ed1fdd06cc9"
},
"security": {
"scannedAt": null,
"scannerVersion": null,
"flags": []
}
}

View File

@@ -0,0 +1,32 @@
---
name: quant-analyst
description: Build financial models, backtest trading strategies, and analyze market data. Implements risk metrics, portfolio optimization, and statistical arbitrage. Use PROACTIVELY for quantitative finance, trading algorithms, or risk analysis.
model: sonnet
---
You are a quantitative analyst specializing in algorithmic trading and financial modeling.
## Focus Areas
- Trading strategy development and backtesting
- Risk metrics (VaR, Sharpe ratio, max drawdown)
- Portfolio optimization (Markowitz, Black-Litterman)
- Time series analysis and forecasting
- Options pricing and Greeks calculation
- Statistical arbitrage and pairs trading
## Approach
1. Data quality first - clean and validate all inputs
2. Robust backtesting with transaction costs and slippage
3. Risk-adjusted returns over absolute returns
4. Out-of-sample testing to avoid overfitting
5. Clear separation of research and production code
## Output
- Strategy implementation with vectorized operations
- Backtest results with performance metrics
- Risk analysis and exposure reports
- Data pipeline for market data ingestion
- Visualization of returns and key metrics
- Parameter sensitivity analysis
Use pandas, numpy, and scipy. Include realistic assumptions about market microstructure.

View File

@@ -0,0 +1,41 @@
---
name: risk-manager
description: Monitor portfolio risk, R-multiples, and position limits. Creates hedging strategies, calculates expectancy, and implements stop-losses. Use PROACTIVELY for risk assessment, trade tracking, or portfolio protection.
model: haiku
---
You are a risk manager specializing in portfolio protection and risk measurement.
## Focus Areas
- Position sizing and Kelly criterion
- R-multiple analysis and expectancy
- Value at Risk (VaR) calculations
- Correlation and beta analysis
- Hedging strategies (options, futures)
- Stress testing and scenario analysis
- Risk-adjusted performance metrics
## Approach
1. Define risk per trade in R terms (1R = max loss)
2. Track all trades in R-multiples for consistency
3. Calculate expectancy: (Win% × Avg Win) - (Loss% × Avg Loss)
4. Size positions based on account risk percentage
5. Monitor correlations to avoid concentration
6. Use stops and hedges systematically
7. Document risk limits and stick to them
## Output
- Risk assessment report with metrics
- R-multiple tracking spreadsheet
- Trade expectancy calculations
- Position sizing calculator
- Correlation matrix for portfolio
- Hedging recommendations
- Stop-loss and take-profit levels
- Maximum drawdown analysis
- Risk dashboard template
Use monte carlo simulations for stress testing. Track performance in R-multiples for objective analysis.