Files
gh-k-dense-ai-claude-scient…/skills/scientific-schematics/README.md
2025-11-30 08:30:14 +08:00

328 lines
8.5 KiB
Markdown

# Scientific Schematics - Nano Banana Pro
**Generate any scientific diagram by describing it in natural language.**
Nano Banana Pro creates publication-quality diagrams automatically - no coding, no templates, no manual drawing required.
## Quick Start
### Generate Any Diagram
```bash
# Set your OpenRouter API key
export OPENROUTER_API_KEY='your_api_key_here'
# Generate any scientific diagram
python scripts/generate_schematic.py "CONSORT participant flow diagram" -o figures/consort.png
# Neural network architecture
python scripts/generate_schematic.py "Transformer encoder-decoder architecture" -o figures/transformer.png
# Biological pathway
python scripts/generate_schematic.py "MAPK signaling pathway" -o figures/pathway.png
```
### What You Get
- **Three iterations** (v1, v2, v3) with progressive refinement
- **Automatic quality review** after each iteration
- **Detailed review log** with scores and critiques (JSON format)
- **Publication-ready images** following scientific standards
## Features
### Iterative Refinement Process
1. **Generation 1**: Create initial diagram from your description
2. **Review 1**: AI evaluates clarity, labels, accuracy, accessibility
3. **Generation 2**: Improve based on critique
4. **Review 2**: Second evaluation with specific feedback
5. **Generation 3**: Final polished version
### Automatic Quality Standards
All diagrams automatically follow:
- Clean white/light background
- High contrast for readability
- Clear labels (minimum 10pt font)
- Professional typography
- Colorblind-friendly colors
- Proper spacing between elements
- Scale bars, legends, axes where appropriate
## Installation
### For AI Generation
```bash
# Get OpenRouter API key
# Visit: https://openrouter.ai/keys
# Set environment variable
export OPENROUTER_API_KEY='sk-or-v1-...'
# Or add to .env file
echo "OPENROUTER_API_KEY=sk-or-v1-..." >> .env
# Install Python dependencies (if not already installed)
pip install requests
```
## Usage Examples
### Example 1: CONSORT Flowchart
```bash
python scripts/generate_schematic.py \
"CONSORT participant flow diagram for RCT. \
Assessed for eligibility (n=500). \
Excluded (n=150): age<18 (n=80), declined (n=50), other (n=20). \
Randomized (n=350) into Treatment (n=175) and Control (n=175). \
Lost to follow-up: 15 and 10 respectively. \
Final analysis: 160 and 165." \
-o figures/consort.png
```
**Output:**
- `figures/consort_v1.png` - Initial generation
- `figures/consort_v2.png` - After first review
- `figures/consort_v3.png` - Final version
- `figures/consort.png` - Copy of final version
- `figures/consort_review_log.json` - Detailed review log
### Example 2: Neural Network Architecture
```bash
python scripts/generate_schematic.py \
"Transformer architecture with encoder on left (input embedding, \
positional encoding, multi-head attention, feed-forward) and \
decoder on right (masked attention, cross-attention, feed-forward). \
Show cross-attention connection from encoder to decoder." \
-o figures/transformer.png \
--iterations 3
```
### Example 3: Biological Pathway
```bash
python scripts/generate_schematic.py \
"MAPK signaling pathway: EGFR receptor → RAS → RAF → MEK → ERK → nucleus. \
Label each step with phosphorylation. Use different colors for each kinase." \
-o figures/mapk.png
```
### Example 4: System Architecture
```bash
python scripts/generate_schematic.py \
"IoT system block diagram: sensors (bottom) → microcontroller → \
WiFi module and display (middle) → cloud server → mobile app (top). \
Label all connections with protocols." \
-o figures/iot_system.png
```
## Command-Line Options
```bash
python scripts/generate_schematic.py [OPTIONS] "description" -o output.png
Options:
--iterations N Number of AI refinement iterations (default: 3)
--api-key KEY OpenRouter API key (or use env var)
-v, --verbose Verbose output
-h, --help Show help message
```
## Python API
```python
from scripts.generate_schematic_ai import ScientificSchematicGenerator
# Initialize
generator = ScientificSchematicGenerator(
api_key="your_key",
verbose=True
)
# Generate with iterative refinement
results = generator.generate_iterative(
user_prompt="CONSORT flowchart",
output_path="figures/consort.png",
iterations=3
)
# Access results
print(f"Final score: {results['final_score']}/10")
print(f"Final image: {results['final_image']}")
# Review iterations
for iteration in results['iterations']:
print(f"Iteration {iteration['iteration']}: {iteration['score']}/10")
print(f"Critique: {iteration['critique']}")
```
## Prompt Engineering Tips
### Be Specific About Layout
✓ "Flowchart with vertical flow, top to bottom"
✓ "Architecture diagram with encoder on left, decoder on right"
✗ "Make a diagram" (too vague)
### Include Quantitative Details
✓ "Neural network: input (784), hidden (128), output (10)"
✓ "Flowchart: n=500 screened, n=150 excluded, n=350 randomized"
✗ "Some numbers" (not specific)
### Specify Visual Style
✓ "Minimalist block diagram with clean lines"
✓ "Detailed biological pathway with protein structures"
✓ "Technical schematic with engineering notation"
### Request Specific Labels
✓ "Label all arrows with activation/inhibition"
✓ "Include layer dimensions in each box"
✓ "Show time progression with timestamps"
### Mention Color Requirements
✓ "Use colorblind-friendly colors"
✓ "Grayscale-compatible design"
✓ "Color-code by function: blue=input, green=processing, red=output"
## Review Log Format
Each generation produces a JSON review log:
```json
{
"user_prompt": "CONSORT participant flow diagram...",
"iterations": [
{
"iteration": 1,
"image_path": "figures/consort_v1.png",
"prompt": "Full generation prompt...",
"critique": "Score: 7/10. Issues: font too small...",
"score": 7.0,
"success": true
},
{
"iteration": 2,
"image_path": "figures/consort_v2.png",
"score": 8.5,
"critique": "Much improved. Remaining issues..."
},
{
"iteration": 3,
"image_path": "figures/consort_v3.png",
"score": 9.5,
"critique": "Excellent. Publication ready."
}
],
"final_image": "figures/consort_v3.png",
"final_score": 9.5,
"success": true
}
```
## Why Use Nano Banana Pro
**Simply describe what you want - Nano Banana Pro creates it:**
-**Fast**: Results in minutes
-**Easy**: Natural language descriptions (no coding)
-**Quality**: Automatic review and refinement
-**Universal**: Works for all diagram types
-**Publication-ready**: High-quality output immediately
**Just describe your diagram, and it's generated automatically.**
## Troubleshooting
### API Key Issues
```bash
# Check if key is set
echo $OPENROUTER_API_KEY
# Set temporarily
export OPENROUTER_API_KEY='your_key'
# Set permanently (add to ~/.bashrc or ~/.zshrc)
echo 'export OPENROUTER_API_KEY="your_key"' >> ~/.bashrc
```
### Import Errors
```bash
# Install requests library
pip install requests
# Or use the package manager
pip install -r requirements.txt
```
### Generation Fails
```bash
# Use verbose mode to see detailed errors
python scripts/generate_schematic.py "diagram" -o out.png -v
# Check API status
curl https://openrouter.ai/api/v1/models
```
### Low Quality Scores
If iterations consistently score below 7/10:
1. Make your prompt more specific
2. Include more details about layout and labels
3. Specify visual requirements explicitly
4. Increase iterations: `--iterations 5`
## Testing
Run verification tests:
```bash
python test_ai_generation.py
```
This tests:
- File structure
- Module imports
- Class initialization
- Error handling
- Prompt engineering
- Wrapper script
## Cost Considerations
OpenRouter pricing for models used:
- **Nano Banana Pro**: ~$2/M input tokens, ~$12/M output tokens
Typical costs per diagram:
- Simple diagram (3 iterations): ~$0.10-0.30
- Complex diagram (5 iterations): ~$0.30-0.50
## Examples Gallery
See the full SKILL.md for extensive examples including:
- CONSORT flowcharts
- Neural network architectures (Transformers, CNNs, RNNs)
- Biological pathways
- Circuit diagrams
- System architectures
- Block diagrams
## Support
For issues or questions:
1. Check SKILL.md for detailed documentation
2. Run test_ai_generation.py to verify setup
3. Use verbose mode (-v) to see detailed errors
4. Review the review_log.json for quality feedback
## License
Part of the scientific-writer package. See main repository for license information.