Files
gh-k-dense-ai-claude-scient…/skills/zinc-database/SKILL.md
2025-11-30 08:30:10 +08:00

399 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
name: zinc-database
description: "Access ZINC (230M+ purchasable compounds). Search by ZINC ID/SMILES, similarity searches, 3D-ready structures for docking, analog discovery, for virtual screening and drug discovery."
---
# ZINC Database
## Overview
ZINC is a freely accessible repository of 230M+ purchasable compounds maintained by UCSF. Search by ZINC ID or SMILES, perform similarity searches, download 3D-ready structures for docking, discover analogs for virtual screening and drug discovery.
## When to Use This Skill
This skill should be used when:
- **Virtual screening**: Finding compounds for molecular docking studies
- **Lead discovery**: Identifying commercially-available compounds for drug development
- **Structure searches**: Performing similarity or analog searches by SMILES
- **Compound retrieval**: Looking up molecules by ZINC IDs or supplier codes
- **Chemical space exploration**: Exploring purchasable chemical diversity
- **Docking studies**: Accessing 3D-ready molecular structures
- **Analog searches**: Finding similar compounds based on structural similarity
- **Supplier queries**: Identifying compounds from specific chemical vendors
- **Random sampling**: Obtaining random compound sets for screening
## Database Versions
ZINC has evolved through multiple versions:
- **ZINC22** (Current): Largest version with 230+ million purchasable compounds and multi-billion scale make-on-demand compounds
- **ZINC20**: Still maintained, focused on lead-like and drug-like compounds
- **ZINC15**: Predecessor version, legacy but still documented
This skill primarily focuses on ZINC22, the most current and comprehensive version.
## Access Methods
### Web Interface
Primary access point: https://zinc.docking.org/
Interactive searching: https://cartblanche22.docking.org/
### API Access
All ZINC22 searches can be performed programmatically via the CartBlanche22 API:
**Base URL**: `https://cartblanche22.docking.org/`
All API endpoints return data in text or JSON format with customizable fields.
## Core Capabilities
### 1. Search by ZINC ID
Retrieve specific compounds using their ZINC identifiers.
**Web interface**: https://cartblanche22.docking.org/search/zincid
**API endpoint**:
```bash
curl "https://cartblanche22.docking.org/[email protected]_fields=smiles,zinc_id"
```
**Multiple IDs**:
```bash
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001,ZINC000000000002&output_fields=smiles,zinc_id,tranche"
```
**Response fields**: `zinc_id`, `smiles`, `sub_id`, `supplier_code`, `catalogs`, `tranche` (includes H-count, LogP, MW, phase)
### 2. Search by SMILES
Find compounds by chemical structure using SMILES notation, with optional distance parameters for analog searching.
**Web interface**: https://cartblanche22.docking.org/search/smiles
**API endpoint**:
```bash
curl "https://cartblanche22.docking.org/[email protected]=4-Fadist=4"
```
**Parameters**:
- `smiles`: Query SMILES string (URL-encoded if necessary)
- `dist`: Tanimoto distance threshold (default: 0 for exact match)
- `adist`: Alternative distance parameter for broader searches (default: 0)
- `output_fields`: Comma-separated list of desired output fields
**Example - Exact match**:
```bash
curl "https://cartblanche22.docking.org/smiles.txt:smiles=c1ccccc1"
```
**Example - Similarity search**:
```bash
curl "https://cartblanche22.docking.org/smiles.txt:smiles=c1ccccc1&dist=3&output_fields=zinc_id,smiles,tranche"
```
### 3. Search by Supplier Codes
Query compounds from specific chemical suppliers or retrieve all molecules from particular catalogs.
**Web interface**: https://cartblanche22.docking.org/search/catitems
**API endpoint**:
```bash
curl "https://cartblanche22.docking.org/catitems.txt:catitem_id=SUPPLIER-CODE-123"
```
**Use cases**:
- Verify compound availability from specific vendors
- Retrieve all compounds from a catalog
- Cross-reference supplier codes with ZINC IDs
### 4. Random Compound Sampling
Generate random compound sets for screening or benchmarking purposes.
**Web interface**: https://cartblanche22.docking.org/search/random
**API endpoint**:
```bash
curl "https://cartblanche22.docking.org/substance/random.txt:count=100"
```
**Parameters**:
- `count`: Number of random compounds to retrieve (default: 100)
- `subset`: Filter by subset (e.g., 'lead-like', 'drug-like', 'fragment')
- `output_fields`: Customize returned data fields
**Example - Random lead-like molecules**:
```bash
curl "https://cartblanche22.docking.org/substance/random.txt:count=1000&subset=lead-like&output_fields=zinc_id,smiles,tranche"
```
## Common Workflows
### Workflow 1: Preparing a Docking Library
1. **Define search criteria** based on target properties or desired chemical space
2. **Query ZINC22** using appropriate search method:
```bash
# Example: Get drug-like compounds with specific LogP and MW
curl "https://cartblanche22.docking.org/substance/random.txt:count=10000&subset=drug-like&output_fields=zinc_id,smiles,tranche" > docking_library.txt
```
3. **Parse results** to extract ZINC IDs and SMILES:
```python
import pandas as pd
# Load results
df = pd.read_csv('docking_library.txt', sep='\t')
# Filter by properties in tranche data
# Tranche format: H##P###M###-phase
# H = H-bond donors, P = LogP*10, M = MW
```
4. **Download 3D structures** for docking using ZINC ID or download from file repositories
### Workflow 2: Finding Analogs of a Hit Compound
1. **Obtain SMILES** of the hit compound:
```python
hit_smiles = "CC(C)Cc1ccc(cc1)C(C)C(=O)O" # Example: Ibuprofen
```
2. **Perform similarity search** with distance threshold:
```bash
curl "https://cartblanche22.docking.org/smiles.txt:smiles=CC(C)Cc1ccc(cc1)C(C)C(=O)O&dist=5&output_fields=zinc_id,smiles,catalogs" > analogs.txt
```
3. **Analyze results** to identify purchasable analogs:
```python
import pandas as pd
analogs = pd.read_csv('analogs.txt', sep='\t')
print(f"Found {len(analogs)} analogs")
print(analogs[['zinc_id', 'smiles', 'catalogs']].head(10))
```
4. **Retrieve 3D structures** for the most promising analogs
### Workflow 3: Batch Compound Retrieval
1. **Compile list of ZINC IDs** from literature, databases, or previous screens:
```python
zinc_ids = [
"ZINC000000000001",
"ZINC000000000002",
"ZINC000000000003"
]
zinc_ids_str = ",".join(zinc_ids)
```
2. **Query ZINC22 API**:
```bash
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001,ZINC000000000002&output_fields=zinc_id,smiles,supplier_code,catalogs"
```
3. **Process results** for downstream analysis or purchasing
### Workflow 4: Chemical Space Sampling
1. **Select subset parameters** based on screening goals:
- Fragment: MW < 250, good for fragment-based drug discovery
- Lead-like: MW 250-350, LogP ≤ 3.5
- Drug-like: MW 350-500, follows Lipinski's Rule of Five
2. **Generate random sample**:
```bash
curl "https://cartblanche22.docking.org/substance/random.txt:count=5000&subset=lead-like&output_fields=zinc_id,smiles,tranche" > chemical_space_sample.txt
```
3. **Analyze chemical diversity** and prepare for virtual screening
## Output Fields
Customize API responses with the `output_fields` parameter:
**Available fields**:
- `zinc_id`: ZINC identifier
- `smiles`: SMILES string representation
- `sub_id`: Internal substance ID
- `supplier_code`: Vendor catalog number
- `catalogs`: List of suppliers offering the compound
- `tranche`: Encoded molecular properties (H-count, LogP, MW, reactivity phase)
**Example**:
```bash
curl "https://cartblanche22.docking.org/substances.txt:zinc_id=ZINC000000000001&output_fields=zinc_id,smiles,catalogs,tranche"
```
## Tranche System
ZINC organizes compounds into "tranches" based on molecular properties:
**Format**: `H##P###M###-phase`
- **H##**: Number of hydrogen bond donors (00-99)
- **P###**: LogP × 10 (e.g., P035 = LogP 3.5)
- **M###**: Molecular weight in Daltons (e.g., M400 = 400 Da)
- **phase**: Reactivity classification
**Example tranche**: `H05P035M400-0`
- 5 H-bond donors
- LogP = 3.5
- MW = 400 Da
- Reactivity phase 0
Use tranche data to filter compounds by drug-likeness criteria.
## Downloading 3D Structures
For molecular docking, 3D structures are available via file repositories:
**File repository**: https://files.docking.org/zinc22/
Structures are organized by tranches and available in multiple formats:
- MOL2: Multi-molecule format with 3D coordinates
- SDF: Structure-data file format
- DB2.GZ: Compressed database format for DOCK
Refer to ZINC documentation at https://wiki.docking.org for downloading protocols and batch access methods.
## Python Integration
### Using curl with Python
```python
import subprocess
import json
def query_zinc_by_id(zinc_id, output_fields="zinc_id,smiles,catalogs"):
"""Query ZINC22 by ZINC ID."""
url = f"https://cartblanche22.docking.org/[email protected]_id={zinc_id}&output_fields={output_fields}"
result = subprocess.run(['curl', url], capture_output=True, text=True)
return result.stdout
def search_by_smiles(smiles, dist=0, adist=0, output_fields="zinc_id,smiles"):
"""Search ZINC22 by SMILES with optional distance parameters."""
url = f"https://cartblanche22.docking.org/smiles.txt:smiles={smiles}&dist={dist}&adist={adist}&output_fields={output_fields}"
result = subprocess.run(['curl', url], capture_output=True, text=True)
return result.stdout
def get_random_compounds(count=100, subset=None, output_fields="zinc_id,smiles,tranche"):
"""Get random compounds from ZINC22."""
url = f"https://cartblanche22.docking.org/substance/random.txt:count={count}&output_fields={output_fields}"
if subset:
url += f"&subset={subset}"
result = subprocess.run(['curl', url], capture_output=True, text=True)
return result.stdout
```
### Parsing Results
```python
import pandas as pd
from io import StringIO
# Query ZINC and parse as DataFrame
result = query_zinc_by_id("ZINC000000000001")
df = pd.read_csv(StringIO(result), sep='\t')
# Extract tranche properties
def parse_tranche(tranche_str):
"""Parse ZINC tranche code to extract properties."""
# Format: H##P###M###-phase
import re
match = re.match(r'H(\d+)P(\d+)M(\d+)-(\d+)', tranche_str)
if match:
return {
'h_donors': int(match.group(1)),
'logP': int(match.group(2)) / 10.0,
'mw': int(match.group(3)),
'phase': int(match.group(4))
}
return None
df['tranche_props'] = df['tranche'].apply(parse_tranche)
```
## Best Practices
### Query Optimization
- **Start specific**: Begin with exact searches before expanding to similarity searches
- **Use appropriate distance parameters**: Small dist values (1-3) for close analogs, larger (5-10) for diverse analogs
- **Limit output fields**: Request only necessary fields to reduce data transfer
- **Batch queries**: Combine multiple ZINC IDs in a single API call when possible
### Performance Considerations
- **Rate limiting**: Respect server resources; avoid rapid consecutive requests
- **Caching**: Store frequently accessed compounds locally
- **Parallel downloads**: When downloading 3D structures, use parallel wget or aria2c for file repositories
- **Subset filtering**: Use lead-like, drug-like, or fragment subsets to reduce search space
### Data Quality
- **Verify availability**: Supplier catalogs change; confirm compound availability before large orders
- **Check stereochemistry**: SMILES may not fully specify stereochemistry; verify 3D structures
- **Validate structures**: Use cheminformatics tools (RDKit, OpenBabel) to verify structure validity
- **Cross-reference**: When possible, cross-check with other databases (PubChem, ChEMBL)
## Resources
### references/api_reference.md
Comprehensive documentation including:
- Complete API endpoint reference
- URL syntax and parameter specifications
- Advanced query patterns and examples
- File repository organization and access
- Bulk download methods
- Error handling and troubleshooting
- Integration with molecular docking software
Consult this document for detailed technical information and advanced usage patterns.
## Important Disclaimers
### Data Reliability
ZINC explicitly states: **"We do not guarantee the quality of any molecule for any purpose and take no responsibility for errors arising from the use of this database."**
- Compound availability may change without notice
- Structure representations may contain errors
- Supplier information should be verified independently
- Use appropriate validation before experimental work
### Appropriate Use
- ZINC is intended for academic and research purposes in drug discovery
- Verify licensing terms for commercial use
- Respect intellectual property when working with patented compounds
- Follow your institution's guidelines for compound procurement
## Additional Resources
- **ZINC Website**: https://zinc.docking.org/
- **CartBlanche22 Interface**: https://cartblanche22.docking.org/
- **ZINC Wiki**: https://wiki.docking.org/
- **File Repository**: https://files.docking.org/zinc22/
- **GitHub**: https://github.com/docking-org/
- **Primary Publication**: Irwin et al., J. Chem. Inf. Model 2020 (ZINC15)
- **ZINC22 Publication**: Irwin et al., J. Chem. Inf. Model 2023
## Citations
When using ZINC in publications, cite the appropriate version:
**ZINC22**:
Irwin, J. J., et al. "ZINC22—A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery." *Journal of Chemical Information and Modeling* 2023.
**ZINC15**:
Irwin, J. J., et al. "ZINC15 Ligand Discovery for Everyone." *Journal of Chemical Information and Modeling* 2020, 60, 60656073.