Files
gh-k-dense-ai-claude-scient…/skills/simpy/scripts/basic_simulation_template.py
2025-11-30 08:30:10 +08:00

194 lines
5.4 KiB
Python

#!/usr/bin/env python3
"""
Basic SimPy Simulation Template
This template provides a starting point for building SimPy simulations.
Customize the process functions and parameters for your specific use case.
"""
import simpy
import random
class SimulationConfig:
"""Configuration parameters for the simulation."""
def __init__(self):
self.random_seed = 42
self.num_resources = 2
self.num_processes = 10
self.sim_time = 100
self.arrival_rate = 5.0 # Average time between arrivals
self.service_time_mean = 3.0 # Average service time
self.service_time_std = 1.0 # Service time standard deviation
class SimulationStats:
"""Collect and report simulation statistics."""
def __init__(self):
self.arrival_times = []
self.service_start_times = []
self.departure_times = []
self.wait_times = []
self.service_times = []
def record_arrival(self, time):
self.arrival_times.append(time)
def record_service_start(self, time):
self.service_start_times.append(time)
def record_departure(self, time):
self.departure_times.append(time)
def record_wait_time(self, wait_time):
self.wait_times.append(wait_time)
def record_service_time(self, service_time):
self.service_times.append(service_time)
def report(self):
print("\n" + "=" * 50)
print("SIMULATION STATISTICS")
print("=" * 50)
if self.wait_times:
print(f"Total customers: {len(self.wait_times)}")
print(f"Average wait time: {sum(self.wait_times) / len(self.wait_times):.2f}")
print(f"Max wait time: {max(self.wait_times):.2f}")
print(f"Min wait time: {min(self.wait_times):.2f}")
if self.service_times:
print(f"Average service time: {sum(self.service_times) / len(self.service_times):.2f}")
if self.arrival_times and self.departure_times:
throughput = len(self.departure_times) / max(self.departure_times)
print(f"Throughput: {throughput:.2f} customers/time unit")
print("=" * 50)
def customer_process(env, name, resource, stats, config):
"""
Simulate a customer process.
Args:
env: SimPy environment
name: Customer identifier
resource: Shared resource (e.g., server, machine)
stats: Statistics collector
config: Simulation configuration
"""
# Record arrival
arrival_time = env.now
stats.record_arrival(arrival_time)
print(f"{name} arrived at {arrival_time:.2f}")
# Request resource
with resource.request() as request:
yield request
# Record service start and calculate wait time
service_start = env.now
wait_time = service_start - arrival_time
stats.record_service_start(service_start)
stats.record_wait_time(wait_time)
print(f"{name} started service at {service_start:.2f} (waited {wait_time:.2f})")
# Service time (normally distributed)
service_time = max(0.1, random.gauss(
config.service_time_mean,
config.service_time_std
))
stats.record_service_time(service_time)
yield env.timeout(service_time)
# Record departure
departure_time = env.now
stats.record_departure(departure_time)
print(f"{name} departed at {departure_time:.2f}")
def customer_generator(env, resource, stats, config):
"""
Generate customers arriving at random intervals.
Args:
env: SimPy environment
resource: Shared resource
stats: Statistics collector
config: Simulation configuration
"""
customer_count = 0
while True:
# Wait for next customer arrival (exponential distribution)
inter_arrival_time = random.expovariate(1.0 / config.arrival_rate)
yield env.timeout(inter_arrival_time)
# Create new customer process
customer_count += 1
customer_name = f"Customer {customer_count}"
env.process(customer_process(env, customer_name, resource, stats, config))
def run_simulation(config):
"""
Run the simulation with given configuration.
Args:
config: SimulationConfig object with simulation parameters
Returns:
SimulationStats object with collected statistics
"""
# Set random seed for reproducibility
random.seed(config.random_seed)
# Create environment
env = simpy.Environment()
# Create shared resource
resource = simpy.Resource(env, capacity=config.num_resources)
# Create statistics collector
stats = SimulationStats()
# Start customer generator
env.process(customer_generator(env, resource, stats, config))
# Run simulation
print(f"Starting simulation for {config.sim_time} time units...")
print(f"Resources: {config.num_resources}")
print(f"Average arrival rate: {config.arrival_rate:.2f}")
print(f"Average service time: {config.service_time_mean:.2f}")
print("-" * 50)
env.run(until=config.sim_time)
return stats
def main():
"""Main function to run the simulation."""
# Create configuration
config = SimulationConfig()
# Customize configuration if needed
config.num_resources = 2
config.sim_time = 50
config.arrival_rate = 2.0
config.service_time_mean = 3.0
# Run simulation
stats = run_simulation(config)
# Report statistics
stats.report()
if __name__ == "__main__":
main()