10 KiB
SimPy Real-Time Simulations
This guide covers real-time simulation capabilities in SimPy, where simulation time is synchronized with wall-clock time.
Overview
Real-time simulations synchronize simulation time with actual wall-clock time. This is useful for:
- Hardware-in-the-loop (HIL) testing
- Human interaction with simulations
- Algorithm behavior analysis under real-time constraints
- System integration testing
- Demonstration purposes
RealtimeEnvironment
Replace the standard Environment with simpy.rt.RealtimeEnvironment to enable real-time synchronization.
Basic Usage
import simpy.rt
def process(env):
while True:
print(f'Tick at {env.now}')
yield env.timeout(1)
# Real-time environment with 1:1 time mapping
env = simpy.rt.RealtimeEnvironment(factor=1.0)
env.process(process(env))
env.run(until=5)
Constructor Parameters
simpy.rt.RealtimeEnvironment(
initial_time=0, # Starting simulation time
factor=1.0, # Real time per simulation time unit
strict=True # Raise errors on timing violations
)
Time Scaling with Factor
The factor parameter controls how simulation time maps to real time.
Factor Examples
import simpy.rt
import time
def timed_process(env, label):
start = time.time()
print(f'{label}: Starting at {env.now}')
yield env.timeout(2)
elapsed = time.time() - start
print(f'{label}: Completed at {env.now} (real time: {elapsed:.2f}s)')
# Factor = 1.0: 1 simulation time unit = 1 second
print('Factor = 1.0 (2 sim units = 2 seconds)')
env = simpy.rt.RealtimeEnvironment(factor=1.0)
env.process(timed_process(env, 'Normal speed'))
env.run()
# Factor = 0.5: 1 simulation time unit = 0.5 seconds
print('\nFactor = 0.5 (2 sim units = 1 second)')
env = simpy.rt.RealtimeEnvironment(factor=0.5)
env.process(timed_process(env, 'Double speed'))
env.run()
# Factor = 2.0: 1 simulation time unit = 2 seconds
print('\nFactor = 2.0 (2 sim units = 4 seconds)')
env = simpy.rt.RealtimeEnvironment(factor=2.0)
env.process(timed_process(env, 'Half speed'))
env.run()
Factor interpretation:
factor=1.0→ 1 simulation time unit takes 1 real secondfactor=0.1→ 1 simulation time unit takes 0.1 real seconds (10x faster)factor=60→ 1 simulation time unit takes 60 real seconds (1 minute)
Strict Mode
strict=True (Default)
Raises RuntimeError if computation exceeds allocated real-time budget.
import simpy.rt
import time
def heavy_computation(env):
print(f'Starting computation at {env.now}')
yield env.timeout(1)
# Simulate heavy computation (exceeds 1 second budget)
time.sleep(1.5)
print(f'Computation done at {env.now}')
env = simpy.rt.RealtimeEnvironment(factor=1.0, strict=True)
env.process(heavy_computation(env))
try:
env.run()
except RuntimeError as e:
print(f'Error: {e}')
strict=False
Allows simulation to run slower than intended without crashing.
import simpy.rt
import time
def heavy_computation(env):
print(f'Starting at {env.now}')
yield env.timeout(1)
# Heavy computation
time.sleep(1.5)
print(f'Done at {env.now}')
env = simpy.rt.RealtimeEnvironment(factor=1.0, strict=False)
env.process(heavy_computation(env))
env.run()
print('Simulation completed (slower than real-time)')
Use strict=False when:
- Development and debugging
- Computation time is unpredictable
- Acceptable to run slower than target rate
- Analyzing worst-case behavior
Hardware-in-the-Loop Example
import simpy.rt
class HardwareInterface:
"""Simulated hardware interface."""
def __init__(self):
self.sensor_value = 0
def read_sensor(self):
"""Simulate reading from hardware sensor."""
import random
self.sensor_value = random.uniform(20.0, 30.0)
return self.sensor_value
def write_actuator(self, value):
"""Simulate writing to hardware actuator."""
print(f'Actuator set to {value:.2f}')
def control_loop(env, hardware, setpoint):
"""Simple control loop running in real-time."""
while True:
# Read sensor
sensor_value = hardware.read_sensor()
print(f'[{env.now}] Sensor: {sensor_value:.2f}°C')
# Simple proportional control
error = setpoint - sensor_value
control_output = error * 0.1
# Write actuator
hardware.write_actuator(control_output)
# Control loop runs every 0.5 seconds
yield env.timeout(0.5)
# Real-time environment: 1 sim unit = 1 second
env = simpy.rt.RealtimeEnvironment(factor=1.0, strict=False)
hardware = HardwareInterface()
setpoint = 25.0
env.process(control_loop(env, hardware, setpoint))
env.run(until=5)
Human Interaction Example
import simpy.rt
def interactive_process(env):
"""Process that waits for simulated user input."""
print('Simulation started. Events will occur in real-time.')
yield env.timeout(2)
print(f'[{env.now}] Event 1: System startup')
yield env.timeout(3)
print(f'[{env.now}] Event 2: Initialization complete')
yield env.timeout(2)
print(f'[{env.now}] Event 3: Ready for operation')
# Real-time environment for human-paced demonstration
env = simpy.rt.RealtimeEnvironment(factor=1.0)
env.process(interactive_process(env))
env.run()
Monitoring Real-Time Performance
import simpy.rt
import time
class RealTimeMonitor:
def __init__(self):
self.step_times = []
self.drift_values = []
def record_step(self, sim_time, real_time, expected_real_time):
self.step_times.append(sim_time)
drift = real_time - expected_real_time
self.drift_values.append(drift)
def report(self):
if self.drift_values:
avg_drift = sum(self.drift_values) / len(self.drift_values)
max_drift = max(abs(d) for d in self.drift_values)
print(f'\nReal-time performance:')
print(f'Average drift: {avg_drift*1000:.2f} ms')
print(f'Maximum drift: {max_drift*1000:.2f} ms')
def monitored_process(env, monitor, start_time, factor):
for i in range(5):
step_start = time.time()
yield env.timeout(1)
real_elapsed = time.time() - start_time
expected_elapsed = env.now * factor
monitor.record_step(env.now, real_elapsed, expected_elapsed)
print(f'Sim time: {env.now}, Real time: {real_elapsed:.2f}s, ' +
f'Expected: {expected_elapsed:.2f}s')
start = time.time()
factor = 1.0
env = simpy.rt.RealtimeEnvironment(factor=factor, strict=False)
monitor = RealTimeMonitor()
env.process(monitored_process(env, monitor, start, factor))
env.run()
monitor.report()
Mixed Real-Time and Fast Simulation
import simpy.rt
def background_simulation(env):
"""Fast background simulation."""
for i in range(100):
yield env.timeout(0.01)
print(f'Background simulation completed at {env.now}')
def real_time_display(env):
"""Real-time display updates."""
for i in range(5):
print(f'Display update at {env.now}')
yield env.timeout(1)
# Note: This is conceptual - SimPy doesn't directly support mixed modes
# Consider running separate simulations or using strict=False
env = simpy.rt.RealtimeEnvironment(factor=1.0, strict=False)
env.process(background_simulation(env))
env.process(real_time_display(env))
env.run()
Converting Standard to Real-Time
Converting a standard simulation to real-time is straightforward:
import simpy
import simpy.rt
def process(env):
print(f'Event at {env.now}')
yield env.timeout(1)
print(f'Event at {env.now}')
yield env.timeout(1)
print(f'Event at {env.now}')
# Standard simulation (runs instantly)
print('Standard simulation:')
env = simpy.Environment()
env.process(process(env))
env.run()
# Real-time simulation (2 real seconds)
print('\nReal-time simulation:')
env_rt = simpy.rt.RealtimeEnvironment(factor=1.0)
env_rt.process(process(env_rt))
env_rt.run()
Best Practices
-
Factor selection: Choose factor based on hardware/human constraints
- Human interaction:
factor=1.0(1:1 time mapping) - Fast hardware:
factor=0.01(100x faster) - Slow processes:
factor=60(1 sim unit = 1 minute)
- Human interaction:
-
Strict mode usage:
- Use
strict=Truefor timing validation - Use
strict=Falsefor development and variable workloads
- Use
-
Computation budget: Ensure process logic executes faster than timeout duration
-
Error handling: Wrap real-time runs in try-except for timing violations
-
Testing strategy:
- Develop with standard Environment (fast iteration)
- Test with RealtimeEnvironment (validation)
- Deploy with appropriate factor and strict settings
-
Performance monitoring: Track drift between simulation and real time
-
Graceful degradation: Use
strict=Falsewhen timing guarantees aren't critical
Common Patterns
Periodic Real-Time Tasks
import simpy.rt
def periodic_task(env, name, period, duration):
"""Task that runs periodically in real-time."""
while True:
start = env.now
print(f'{name}: Starting at {start}')
# Simulate work
yield env.timeout(duration)
print(f'{name}: Completed at {env.now}')
# Wait for next period
elapsed = env.now - start
wait_time = period - elapsed
if wait_time > 0:
yield env.timeout(wait_time)
env = simpy.rt.RealtimeEnvironment(factor=1.0)
env.process(periodic_task(env, 'Task', period=2.0, duration=0.5))
env.run(until=6)
Synchronized Multi-Device Control
import simpy.rt
def device_controller(env, device_id, update_rate):
"""Control loop for individual device."""
while True:
print(f'Device {device_id}: Update at {env.now}')
yield env.timeout(update_rate)
# All devices synchronized to real-time
env = simpy.rt.RealtimeEnvironment(factor=1.0)
# Different update rates for different devices
env.process(device_controller(env, 'A', 1.0))
env.process(device_controller(env, 'B', 0.5))
env.process(device_controller(env, 'C', 2.0))
env.run(until=5)
Limitations
- Performance: Real-time simulation adds overhead; not suitable for high-frequency events
- Synchronization: Single-threaded; all processes share same time base
- Precision: Limited by Python's time resolution and system scheduling
- Strict mode: May raise errors frequently with computationally intensive processes
- Platform-dependent: Timing accuracy varies across operating systems