396 lines
10 KiB
Markdown
396 lines
10 KiB
Markdown
# SimPy Real-Time Simulations
|
|
|
|
This guide covers real-time simulation capabilities in SimPy, where simulation time is synchronized with wall-clock time.
|
|
|
|
## Overview
|
|
|
|
Real-time simulations synchronize simulation time with actual wall-clock time. This is useful for:
|
|
|
|
- **Hardware-in-the-loop (HIL)** testing
|
|
- **Human interaction** with simulations
|
|
- **Algorithm behavior analysis** under real-time constraints
|
|
- **System integration** testing
|
|
- **Demonstration** purposes
|
|
|
|
## RealtimeEnvironment
|
|
|
|
Replace the standard `Environment` with `simpy.rt.RealtimeEnvironment` to enable real-time synchronization.
|
|
|
|
### Basic Usage
|
|
|
|
```python
|
|
import simpy.rt
|
|
|
|
def process(env):
|
|
while True:
|
|
print(f'Tick at {env.now}')
|
|
yield env.timeout(1)
|
|
|
|
# Real-time environment with 1:1 time mapping
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0)
|
|
env.process(process(env))
|
|
env.run(until=5)
|
|
```
|
|
|
|
### Constructor Parameters
|
|
|
|
```python
|
|
simpy.rt.RealtimeEnvironment(
|
|
initial_time=0, # Starting simulation time
|
|
factor=1.0, # Real time per simulation time unit
|
|
strict=True # Raise errors on timing violations
|
|
)
|
|
```
|
|
|
|
## Time Scaling with Factor
|
|
|
|
The `factor` parameter controls how simulation time maps to real time.
|
|
|
|
### Factor Examples
|
|
|
|
```python
|
|
import simpy.rt
|
|
import time
|
|
|
|
def timed_process(env, label):
|
|
start = time.time()
|
|
print(f'{label}: Starting at {env.now}')
|
|
yield env.timeout(2)
|
|
elapsed = time.time() - start
|
|
print(f'{label}: Completed at {env.now} (real time: {elapsed:.2f}s)')
|
|
|
|
# Factor = 1.0: 1 simulation time unit = 1 second
|
|
print('Factor = 1.0 (2 sim units = 2 seconds)')
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0)
|
|
env.process(timed_process(env, 'Normal speed'))
|
|
env.run()
|
|
|
|
# Factor = 0.5: 1 simulation time unit = 0.5 seconds
|
|
print('\nFactor = 0.5 (2 sim units = 1 second)')
|
|
env = simpy.rt.RealtimeEnvironment(factor=0.5)
|
|
env.process(timed_process(env, 'Double speed'))
|
|
env.run()
|
|
|
|
# Factor = 2.0: 1 simulation time unit = 2 seconds
|
|
print('\nFactor = 2.0 (2 sim units = 4 seconds)')
|
|
env = simpy.rt.RealtimeEnvironment(factor=2.0)
|
|
env.process(timed_process(env, 'Half speed'))
|
|
env.run()
|
|
```
|
|
|
|
**Factor interpretation:**
|
|
- `factor=1.0` → 1 simulation time unit takes 1 real second
|
|
- `factor=0.1` → 1 simulation time unit takes 0.1 real seconds (10x faster)
|
|
- `factor=60` → 1 simulation time unit takes 60 real seconds (1 minute)
|
|
|
|
## Strict Mode
|
|
|
|
### strict=True (Default)
|
|
|
|
Raises `RuntimeError` if computation exceeds allocated real-time budget.
|
|
|
|
```python
|
|
import simpy.rt
|
|
import time
|
|
|
|
def heavy_computation(env):
|
|
print(f'Starting computation at {env.now}')
|
|
yield env.timeout(1)
|
|
|
|
# Simulate heavy computation (exceeds 1 second budget)
|
|
time.sleep(1.5)
|
|
|
|
print(f'Computation done at {env.now}')
|
|
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0, strict=True)
|
|
env.process(heavy_computation(env))
|
|
|
|
try:
|
|
env.run()
|
|
except RuntimeError as e:
|
|
print(f'Error: {e}')
|
|
```
|
|
|
|
### strict=False
|
|
|
|
Allows simulation to run slower than intended without crashing.
|
|
|
|
```python
|
|
import simpy.rt
|
|
import time
|
|
|
|
def heavy_computation(env):
|
|
print(f'Starting at {env.now}')
|
|
yield env.timeout(1)
|
|
|
|
# Heavy computation
|
|
time.sleep(1.5)
|
|
|
|
print(f'Done at {env.now}')
|
|
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0, strict=False)
|
|
env.process(heavy_computation(env))
|
|
env.run()
|
|
|
|
print('Simulation completed (slower than real-time)')
|
|
```
|
|
|
|
**Use strict=False when:**
|
|
- Development and debugging
|
|
- Computation time is unpredictable
|
|
- Acceptable to run slower than target rate
|
|
- Analyzing worst-case behavior
|
|
|
|
## Hardware-in-the-Loop Example
|
|
|
|
```python
|
|
import simpy.rt
|
|
|
|
class HardwareInterface:
|
|
"""Simulated hardware interface."""
|
|
|
|
def __init__(self):
|
|
self.sensor_value = 0
|
|
|
|
def read_sensor(self):
|
|
"""Simulate reading from hardware sensor."""
|
|
import random
|
|
self.sensor_value = random.uniform(20.0, 30.0)
|
|
return self.sensor_value
|
|
|
|
def write_actuator(self, value):
|
|
"""Simulate writing to hardware actuator."""
|
|
print(f'Actuator set to {value:.2f}')
|
|
|
|
def control_loop(env, hardware, setpoint):
|
|
"""Simple control loop running in real-time."""
|
|
while True:
|
|
# Read sensor
|
|
sensor_value = hardware.read_sensor()
|
|
print(f'[{env.now}] Sensor: {sensor_value:.2f}°C')
|
|
|
|
# Simple proportional control
|
|
error = setpoint - sensor_value
|
|
control_output = error * 0.1
|
|
|
|
# Write actuator
|
|
hardware.write_actuator(control_output)
|
|
|
|
# Control loop runs every 0.5 seconds
|
|
yield env.timeout(0.5)
|
|
|
|
# Real-time environment: 1 sim unit = 1 second
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0, strict=False)
|
|
hardware = HardwareInterface()
|
|
setpoint = 25.0
|
|
|
|
env.process(control_loop(env, hardware, setpoint))
|
|
env.run(until=5)
|
|
```
|
|
|
|
## Human Interaction Example
|
|
|
|
```python
|
|
import simpy.rt
|
|
|
|
def interactive_process(env):
|
|
"""Process that waits for simulated user input."""
|
|
print('Simulation started. Events will occur in real-time.')
|
|
|
|
yield env.timeout(2)
|
|
print(f'[{env.now}] Event 1: System startup')
|
|
|
|
yield env.timeout(3)
|
|
print(f'[{env.now}] Event 2: Initialization complete')
|
|
|
|
yield env.timeout(2)
|
|
print(f'[{env.now}] Event 3: Ready for operation')
|
|
|
|
# Real-time environment for human-paced demonstration
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0)
|
|
env.process(interactive_process(env))
|
|
env.run()
|
|
```
|
|
|
|
## Monitoring Real-Time Performance
|
|
|
|
```python
|
|
import simpy.rt
|
|
import time
|
|
|
|
class RealTimeMonitor:
|
|
def __init__(self):
|
|
self.step_times = []
|
|
self.drift_values = []
|
|
|
|
def record_step(self, sim_time, real_time, expected_real_time):
|
|
self.step_times.append(sim_time)
|
|
drift = real_time - expected_real_time
|
|
self.drift_values.append(drift)
|
|
|
|
def report(self):
|
|
if self.drift_values:
|
|
avg_drift = sum(self.drift_values) / len(self.drift_values)
|
|
max_drift = max(abs(d) for d in self.drift_values)
|
|
print(f'\nReal-time performance:')
|
|
print(f'Average drift: {avg_drift*1000:.2f} ms')
|
|
print(f'Maximum drift: {max_drift*1000:.2f} ms')
|
|
|
|
def monitored_process(env, monitor, start_time, factor):
|
|
for i in range(5):
|
|
step_start = time.time()
|
|
yield env.timeout(1)
|
|
|
|
real_elapsed = time.time() - start_time
|
|
expected_elapsed = env.now * factor
|
|
monitor.record_step(env.now, real_elapsed, expected_elapsed)
|
|
|
|
print(f'Sim time: {env.now}, Real time: {real_elapsed:.2f}s, ' +
|
|
f'Expected: {expected_elapsed:.2f}s')
|
|
|
|
start = time.time()
|
|
factor = 1.0
|
|
env = simpy.rt.RealtimeEnvironment(factor=factor, strict=False)
|
|
monitor = RealTimeMonitor()
|
|
|
|
env.process(monitored_process(env, monitor, start, factor))
|
|
env.run()
|
|
monitor.report()
|
|
```
|
|
|
|
## Mixed Real-Time and Fast Simulation
|
|
|
|
```python
|
|
import simpy.rt
|
|
|
|
def background_simulation(env):
|
|
"""Fast background simulation."""
|
|
for i in range(100):
|
|
yield env.timeout(0.01)
|
|
print(f'Background simulation completed at {env.now}')
|
|
|
|
def real_time_display(env):
|
|
"""Real-time display updates."""
|
|
for i in range(5):
|
|
print(f'Display update at {env.now}')
|
|
yield env.timeout(1)
|
|
|
|
# Note: This is conceptual - SimPy doesn't directly support mixed modes
|
|
# Consider running separate simulations or using strict=False
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0, strict=False)
|
|
env.process(background_simulation(env))
|
|
env.process(real_time_display(env))
|
|
env.run()
|
|
```
|
|
|
|
## Converting Standard to Real-Time
|
|
|
|
Converting a standard simulation to real-time is straightforward:
|
|
|
|
```python
|
|
import simpy
|
|
import simpy.rt
|
|
|
|
def process(env):
|
|
print(f'Event at {env.now}')
|
|
yield env.timeout(1)
|
|
print(f'Event at {env.now}')
|
|
yield env.timeout(1)
|
|
print(f'Event at {env.now}')
|
|
|
|
# Standard simulation (runs instantly)
|
|
print('Standard simulation:')
|
|
env = simpy.Environment()
|
|
env.process(process(env))
|
|
env.run()
|
|
|
|
# Real-time simulation (2 real seconds)
|
|
print('\nReal-time simulation:')
|
|
env_rt = simpy.rt.RealtimeEnvironment(factor=1.0)
|
|
env_rt.process(process(env_rt))
|
|
env_rt.run()
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
1. **Factor selection**: Choose factor based on hardware/human constraints
|
|
- Human interaction: `factor=1.0` (1:1 time mapping)
|
|
- Fast hardware: `factor=0.01` (100x faster)
|
|
- Slow processes: `factor=60` (1 sim unit = 1 minute)
|
|
|
|
2. **Strict mode usage**:
|
|
- Use `strict=True` for timing validation
|
|
- Use `strict=False` for development and variable workloads
|
|
|
|
3. **Computation budget**: Ensure process logic executes faster than timeout duration
|
|
|
|
4. **Error handling**: Wrap real-time runs in try-except for timing violations
|
|
|
|
5. **Testing strategy**:
|
|
- Develop with standard Environment (fast iteration)
|
|
- Test with RealtimeEnvironment (validation)
|
|
- Deploy with appropriate factor and strict settings
|
|
|
|
6. **Performance monitoring**: Track drift between simulation and real time
|
|
|
|
7. **Graceful degradation**: Use `strict=False` when timing guarantees aren't critical
|
|
|
|
## Common Patterns
|
|
|
|
### Periodic Real-Time Tasks
|
|
|
|
```python
|
|
import simpy.rt
|
|
|
|
def periodic_task(env, name, period, duration):
|
|
"""Task that runs periodically in real-time."""
|
|
while True:
|
|
start = env.now
|
|
print(f'{name}: Starting at {start}')
|
|
|
|
# Simulate work
|
|
yield env.timeout(duration)
|
|
|
|
print(f'{name}: Completed at {env.now}')
|
|
|
|
# Wait for next period
|
|
elapsed = env.now - start
|
|
wait_time = period - elapsed
|
|
if wait_time > 0:
|
|
yield env.timeout(wait_time)
|
|
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0)
|
|
env.process(periodic_task(env, 'Task', period=2.0, duration=0.5))
|
|
env.run(until=6)
|
|
```
|
|
|
|
### Synchronized Multi-Device Control
|
|
|
|
```python
|
|
import simpy.rt
|
|
|
|
def device_controller(env, device_id, update_rate):
|
|
"""Control loop for individual device."""
|
|
while True:
|
|
print(f'Device {device_id}: Update at {env.now}')
|
|
yield env.timeout(update_rate)
|
|
|
|
# All devices synchronized to real-time
|
|
env = simpy.rt.RealtimeEnvironment(factor=1.0)
|
|
|
|
# Different update rates for different devices
|
|
env.process(device_controller(env, 'A', 1.0))
|
|
env.process(device_controller(env, 'B', 0.5))
|
|
env.process(device_controller(env, 'C', 2.0))
|
|
|
|
env.run(until=5)
|
|
```
|
|
|
|
## Limitations
|
|
|
|
1. **Performance**: Real-time simulation adds overhead; not suitable for high-frequency events
|
|
2. **Synchronization**: Single-threaded; all processes share same time base
|
|
3. **Precision**: Limited by Python's time resolution and system scheduling
|
|
4. **Strict mode**: May raise errors frequently with computationally intensive processes
|
|
5. **Platform-dependent**: Timing accuracy varies across operating systems
|