Files
gh-k-dense-ai-claude-scient…/skills/scvi-tools/references/workflows.md
2025-11-30 08:30:10 +08:00

12 KiB

Common Workflows and Best Practices

This document covers common workflows, best practices, and advanced usage patterns for scvi-tools.

Standard Analysis Workflow

1. Data Loading and Preparation

import scvi
import scanpy as sc
import numpy as np

# Load data (AnnData format required)
adata = sc.read_h5ad("data.h5ad")
# Or load from other formats
# adata = sc.read_10x_mtx("filtered_feature_bc_matrix/")
# adata = sc.read_csv("counts.csv")

# Basic QC metrics
sc.pp.calculate_qc_metrics(adata, inplace=True)
adata.var['mt'] = adata.var_names.str.startswith('MT-')
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], inplace=True)

2. Quality Control

# Filter cells
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_cells(adata, max_genes=5000)

# Filter genes
sc.pp.filter_genes(adata, min_cells=3)

# Filter by mitochondrial content
adata = adata[adata.obs['pct_counts_mt'] < 20, :]

# Remove doublets (optional, before training)
sc.external.pp.scrublet(adata)
adata = adata[~adata.obs['predicted_doublet'], :]

3. Preprocessing for scvi-tools

# IMPORTANT: scvi-tools needs RAW counts
# If you've already normalized, use the raw layer or reload data

# Save raw counts if not already available
if 'counts' not in adata.layers:
    adata.layers['counts'] = adata.X.copy()

# Feature selection (optional but recommended)
sc.pp.highly_variable_genes(
    adata,
    n_top_genes=4000,
    subset=False,  # Keep all genes, just mark HVGs
    batch_key="batch"  # If multiple batches
)

# Filter to HVGs (optional)
# adata = adata[:, adata.var['highly_variable']]

4. Register Data with scvi-tools

# Setup AnnData for scvi-tools
scvi.model.SCVI.setup_anndata(
    adata,
    layer="counts",  # Use raw counts
    batch_key="batch",  # Technical batches
    categorical_covariate_keys=["donor", "condition"],
    continuous_covariate_keys=["percent_mito", "n_counts"]
)

# Check registration
adata.uns['_scvi']['summary_stats']

5. Model Training

# Create model
model = scvi.model.SCVI(
    adata,
    n_latent=30,  # Latent dimensions
    n_layers=2,   # Network depth
    n_hidden=128, # Hidden layer size
    dropout_rate=0.1,
    gene_likelihood="zinb"  # zero-inflated negative binomial
)

# Train model
model.train(
    max_epochs=400,
    batch_size=128,
    train_size=0.9,
    early_stopping=True,
    check_val_every_n_epoch=10
)

# View training history
train_history = model.history["elbo_train"]
val_history = model.history["elbo_validation"]

6. Extract Results

# Get latent representation
latent = model.get_latent_representation()
adata.obsm["X_scVI"] = latent

# Get normalized expression
normalized = model.get_normalized_expression(
    adata,
    library_size=1e4,
    n_samples=25  # Monte Carlo samples
)
adata.layers["scvi_normalized"] = normalized

7. Downstream Analysis

# Clustering on scVI latent space
sc.pp.neighbors(adata, use_rep="X_scVI", n_neighbors=15)
sc.tl.umap(adata, min_dist=0.3)
sc.tl.leiden(adata, resolution=0.8, key_added="leiden")

# Visualization
sc.pl.umap(adata, color=["leiden", "batch", "cell_type"])

# Differential expression
de_results = model.differential_expression(
    groupby="leiden",
    group1="0",
    group2="1",
    mode="change",
    delta=0.25
)

8. Model Persistence

# Save model
model_dir = "./scvi_model/"
model.save(model_dir, overwrite=True)

# Save AnnData with results
adata.write("analyzed_data.h5ad")

# Load model later
model = scvi.model.SCVI.load(model_dir, adata=adata)

Hyperparameter Tuning

Key Hyperparameters

Architecture:

  • n_latent: Latent space dimensionality (10-50)
    • Larger for complex, heterogeneous datasets
    • Smaller for simple datasets or to prevent overfitting
  • n_layers: Number of hidden layers (1-3)
    • More layers for complex data, but diminishing returns
  • n_hidden: Nodes per hidden layer (64-256)
    • Scale with dataset size and complexity

Training:

  • max_epochs: Training iterations (200-500)
    • Use early stopping to prevent overfitting
  • batch_size: Samples per batch (64-256)
    • Larger for big datasets, smaller for limited memory
  • lr: Learning rate (0.001 default, usually good)

Model-specific:

  • gene_likelihood: Distribution ("zinb", "nb", "poisson")
    • "zinb" for sparse data with zero-inflation
    • "nb" for less sparse data
  • dispersion: Gene or gene-batch specific
    • "gene" for simple, "gene-batch" for complex batch effects

Hyperparameter Search Example

from scvi.model import SCVI

# Define search space
latent_dims = [10, 20, 30]
n_layers_options = [1, 2]

best_score = float('-inf')
best_params = None

for n_latent in latent_dims:
    for n_layers in n_layers_options:
        model = SCVI(
            adata,
            n_latent=n_latent,
            n_layers=n_layers
        )
        model.train(max_epochs=200)

        # Evaluate on validation set
        val_elbo = model.history["elbo_validation"][-1]

        if val_elbo > best_score:
            best_score = val_elbo
            best_params = {"n_latent": n_latent, "n_layers": n_layers}

print(f"Best params: {best_params}")

Using Optuna for Hyperparameter Optimization

import optuna

def objective(trial):
    n_latent = trial.suggest_int("n_latent", 10, 50)
    n_layers = trial.suggest_int("n_layers", 1, 3)
    n_hidden = trial.suggest_categorical("n_hidden", [64, 128, 256])

    model = scvi.model.SCVI(
        adata,
        n_latent=n_latent,
        n_layers=n_layers,
        n_hidden=n_hidden
    )

    model.train(max_epochs=200, early_stopping=True)
    return model.history["elbo_validation"][-1]

study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)

print(f"Best parameters: {study.best_params}")

GPU Acceleration

Enable GPU Training

# Automatic GPU detection
model = scvi.model.SCVI(adata)
model.train(accelerator="auto")  # Uses GPU if available

# Force GPU
model.train(accelerator="gpu")

# Multi-GPU
model.train(accelerator="gpu", devices=2)

# Check if GPU is being used
import torch
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"GPU count: {torch.cuda.device_count()}")

GPU Memory Management

# Reduce batch size if OOM
model.train(batch_size=64)  # Instead of default 128

# Mixed precision training (saves memory)
model.train(precision=16)

# Clear cache between runs
import torch
torch.cuda.empty_cache()

Batch Integration Strategies

Strategy 1: Simple Batch Key

# For standard batch correction
scvi.model.SCVI.setup_anndata(adata, batch_key="batch")
model = scvi.model.SCVI(adata)

Strategy 2: Multiple Covariates

# Correct for multiple technical factors
scvi.model.SCVI.setup_anndata(
    adata,
    batch_key="sequencing_batch",
    categorical_covariate_keys=["donor", "tissue"],
    continuous_covariate_keys=["percent_mito"]
)

Strategy 3: Hierarchical Batches

# When batches have hierarchical structure
# E.g., samples within studies
adata.obs["batch_hierarchy"] = (
    adata.obs["study"].astype(str) + "_" +
    adata.obs["sample"].astype(str)
)

scvi.model.SCVI.setup_anndata(adata, batch_key="batch_hierarchy")

Reference Mapping (scArches)

Training Reference Model

# Train on reference dataset
scvi.model.SCVI.setup_anndata(ref_adata, batch_key="batch")
ref_model = scvi.model.SCVI(ref_adata)
ref_model.train()

# Save reference
ref_model.save("reference_model")

Mapping Query to Reference

# Load reference
ref_model = scvi.model.SCVI.load("reference_model", adata=ref_adata)

# Setup query with same parameters
scvi.model.SCVI.setup_anndata(query_adata, batch_key="batch")

# Transfer learning
query_model = scvi.model.SCVI.load_query_data(
    query_adata,
    "reference_model"
)

# Fine-tune on query (optional)
query_model.train(max_epochs=200)

# Get query embeddings
query_latent = query_model.get_latent_representation()

# Transfer labels using KNN
from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=15)
knn.fit(ref_model.get_latent_representation(), ref_adata.obs["cell_type"])
query_adata.obs["predicted_cell_type"] = knn.predict(query_latent)

Model Minification

Reduce model size for faster inference:

# Train full model
model = scvi.model.SCVI(adata)
model.train()

# Minify for deployment
minified = model.minify_adata(adata)

# Save minified version
minified.write("minified_data.h5ad")
model.save("minified_model")

# Load and use (much faster)
mini_model = scvi.model.SCVI.load("minified_model", adata=minified)

Memory-Efficient Data Loading

Using AnnDataLoader

from scvi.data import AnnDataLoader

# For very large datasets
dataloader = AnnDataLoader(
    adata,
    batch_size=128,
    shuffle=True,
    drop_last=False
)

# Custom training loop (advanced)
for batch in dataloader:
    # Process batch
    pass

Using Backed AnnData

# For data too large for memory
adata = sc.read_h5ad("huge_dataset.h5ad", backed='r')

# scvi-tools works with backed mode
scvi.model.SCVI.setup_anndata(adata)
model = scvi.model.SCVI(adata)
model.train()

Model Interpretation

Feature Importance with SHAP

import shap

# Get SHAP values for interpretability
explainer = shap.DeepExplainer(model.module, background_data)
shap_values = explainer.shap_values(test_data)

# Visualize
shap.summary_plot(shap_values, feature_names=adata.var_names)

Gene Correlation Analysis

# Get gene-gene correlation matrix
correlation = model.get_feature_correlation_matrix(
    adata,
    transform_batch="batch1"
)

# Visualize top correlated genes
import seaborn as sns
sns.heatmap(correlation[:50, :50], cmap="coolwarm")

Troubleshooting Common Issues

Issue: NaN Loss During Training

Causes:

  • Learning rate too high
  • Unnormalized input (must use raw counts)
  • Data quality issues

Solutions:

# Reduce learning rate
model.train(lr=0.0001)

# Check data
assert adata.X.min() >= 0  # No negative values
assert np.isnan(adata.X).sum() == 0  # No NaNs

# Use more stable likelihood
model = scvi.model.SCVI(adata, gene_likelihood="nb")

Issue: Poor Batch Correction

Solutions:

# Increase batch effect modeling
model = scvi.model.SCVI(
    adata,
    encode_covariates=True,  # Encode batch in encoder
    deeply_inject_covariates=False
)

# Or try opposite
model = scvi.model.SCVI(adata, deeply_inject_covariates=True)

# Use more latent dimensions
model = scvi.model.SCVI(adata, n_latent=50)

Issue: Model Not Training (ELBO Not Decreasing)

Solutions:

# Increase learning rate
model.train(lr=0.005)

# Increase network capacity
model = scvi.model.SCVI(adata, n_hidden=256, n_layers=2)

# Train longer
model.train(max_epochs=500)

Issue: Out of Memory (OOM)

Solutions:

# Reduce batch size
model.train(batch_size=64)

# Use mixed precision
model.train(precision=16)

# Reduce model size
model = scvi.model.SCVI(adata, n_latent=10, n_hidden=64)

# Use backed AnnData
adata = sc.read_h5ad("data.h5ad", backed='r')

Performance Benchmarking

import time

# Time training
start = time.time()
model.train(max_epochs=400)
training_time = time.time() - start
print(f"Training time: {training_time:.2f}s")

# Time inference
start = time.time()
latent = model.get_latent_representation()
inference_time = time.time() - start
print(f"Inference time: {inference_time:.2f}s")

# Memory usage
import psutil
import os
process = psutil.Process(os.getpid())
memory_gb = process.memory_info().rss / 1024**3
print(f"Memory usage: {memory_gb:.2f} GB")

Best Practices Summary

  1. Always use raw counts: Never log-normalize before scvi-tools
  2. Feature selection: Use highly variable genes for efficiency
  3. Batch correction: Register all known technical covariates
  4. Early stopping: Use validation set to prevent overfitting
  5. Model saving: Always save trained models
  6. GPU usage: Use GPU for large datasets (>10k cells)
  7. Hyperparameter tuning: Start with defaults, tune if needed
  8. Validation: Check batch correction visually (UMAP colored by batch)
  9. Documentation: Keep track of preprocessing steps
  10. Reproducibility: Set random seeds (scvi.settings.seed = 0)