12 KiB
12 KiB
Common Workflows and Best Practices
This document covers common workflows, best practices, and advanced usage patterns for scvi-tools.
Standard Analysis Workflow
1. Data Loading and Preparation
import scvi
import scanpy as sc
import numpy as np
# Load data (AnnData format required)
adata = sc.read_h5ad("data.h5ad")
# Or load from other formats
# adata = sc.read_10x_mtx("filtered_feature_bc_matrix/")
# adata = sc.read_csv("counts.csv")
# Basic QC metrics
sc.pp.calculate_qc_metrics(adata, inplace=True)
adata.var['mt'] = adata.var_names.str.startswith('MT-')
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], inplace=True)
2. Quality Control
# Filter cells
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_cells(adata, max_genes=5000)
# Filter genes
sc.pp.filter_genes(adata, min_cells=3)
# Filter by mitochondrial content
adata = adata[adata.obs['pct_counts_mt'] < 20, :]
# Remove doublets (optional, before training)
sc.external.pp.scrublet(adata)
adata = adata[~adata.obs['predicted_doublet'], :]
3. Preprocessing for scvi-tools
# IMPORTANT: scvi-tools needs RAW counts
# If you've already normalized, use the raw layer or reload data
# Save raw counts if not already available
if 'counts' not in adata.layers:
adata.layers['counts'] = adata.X.copy()
# Feature selection (optional but recommended)
sc.pp.highly_variable_genes(
adata,
n_top_genes=4000,
subset=False, # Keep all genes, just mark HVGs
batch_key="batch" # If multiple batches
)
# Filter to HVGs (optional)
# adata = adata[:, adata.var['highly_variable']]
4. Register Data with scvi-tools
# Setup AnnData for scvi-tools
scvi.model.SCVI.setup_anndata(
adata,
layer="counts", # Use raw counts
batch_key="batch", # Technical batches
categorical_covariate_keys=["donor", "condition"],
continuous_covariate_keys=["percent_mito", "n_counts"]
)
# Check registration
adata.uns['_scvi']['summary_stats']
5. Model Training
# Create model
model = scvi.model.SCVI(
adata,
n_latent=30, # Latent dimensions
n_layers=2, # Network depth
n_hidden=128, # Hidden layer size
dropout_rate=0.1,
gene_likelihood="zinb" # zero-inflated negative binomial
)
# Train model
model.train(
max_epochs=400,
batch_size=128,
train_size=0.9,
early_stopping=True,
check_val_every_n_epoch=10
)
# View training history
train_history = model.history["elbo_train"]
val_history = model.history["elbo_validation"]
6. Extract Results
# Get latent representation
latent = model.get_latent_representation()
adata.obsm["X_scVI"] = latent
# Get normalized expression
normalized = model.get_normalized_expression(
adata,
library_size=1e4,
n_samples=25 # Monte Carlo samples
)
adata.layers["scvi_normalized"] = normalized
7. Downstream Analysis
# Clustering on scVI latent space
sc.pp.neighbors(adata, use_rep="X_scVI", n_neighbors=15)
sc.tl.umap(adata, min_dist=0.3)
sc.tl.leiden(adata, resolution=0.8, key_added="leiden")
# Visualization
sc.pl.umap(adata, color=["leiden", "batch", "cell_type"])
# Differential expression
de_results = model.differential_expression(
groupby="leiden",
group1="0",
group2="1",
mode="change",
delta=0.25
)
8. Model Persistence
# Save model
model_dir = "./scvi_model/"
model.save(model_dir, overwrite=True)
# Save AnnData with results
adata.write("analyzed_data.h5ad")
# Load model later
model = scvi.model.SCVI.load(model_dir, adata=adata)
Hyperparameter Tuning
Key Hyperparameters
Architecture:
n_latent: Latent space dimensionality (10-50)- Larger for complex, heterogeneous datasets
- Smaller for simple datasets or to prevent overfitting
n_layers: Number of hidden layers (1-3)- More layers for complex data, but diminishing returns
n_hidden: Nodes per hidden layer (64-256)- Scale with dataset size and complexity
Training:
max_epochs: Training iterations (200-500)- Use early stopping to prevent overfitting
batch_size: Samples per batch (64-256)- Larger for big datasets, smaller for limited memory
lr: Learning rate (0.001 default, usually good)
Model-specific:
gene_likelihood: Distribution ("zinb", "nb", "poisson")- "zinb" for sparse data with zero-inflation
- "nb" for less sparse data
dispersion: Gene or gene-batch specific- "gene" for simple, "gene-batch" for complex batch effects
Hyperparameter Search Example
from scvi.model import SCVI
# Define search space
latent_dims = [10, 20, 30]
n_layers_options = [1, 2]
best_score = float('-inf')
best_params = None
for n_latent in latent_dims:
for n_layers in n_layers_options:
model = SCVI(
adata,
n_latent=n_latent,
n_layers=n_layers
)
model.train(max_epochs=200)
# Evaluate on validation set
val_elbo = model.history["elbo_validation"][-1]
if val_elbo > best_score:
best_score = val_elbo
best_params = {"n_latent": n_latent, "n_layers": n_layers}
print(f"Best params: {best_params}")
Using Optuna for Hyperparameter Optimization
import optuna
def objective(trial):
n_latent = trial.suggest_int("n_latent", 10, 50)
n_layers = trial.suggest_int("n_layers", 1, 3)
n_hidden = trial.suggest_categorical("n_hidden", [64, 128, 256])
model = scvi.model.SCVI(
adata,
n_latent=n_latent,
n_layers=n_layers,
n_hidden=n_hidden
)
model.train(max_epochs=200, early_stopping=True)
return model.history["elbo_validation"][-1]
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)
print(f"Best parameters: {study.best_params}")
GPU Acceleration
Enable GPU Training
# Automatic GPU detection
model = scvi.model.SCVI(adata)
model.train(accelerator="auto") # Uses GPU if available
# Force GPU
model.train(accelerator="gpu")
# Multi-GPU
model.train(accelerator="gpu", devices=2)
# Check if GPU is being used
import torch
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"GPU count: {torch.cuda.device_count()}")
GPU Memory Management
# Reduce batch size if OOM
model.train(batch_size=64) # Instead of default 128
# Mixed precision training (saves memory)
model.train(precision=16)
# Clear cache between runs
import torch
torch.cuda.empty_cache()
Batch Integration Strategies
Strategy 1: Simple Batch Key
# For standard batch correction
scvi.model.SCVI.setup_anndata(adata, batch_key="batch")
model = scvi.model.SCVI(adata)
Strategy 2: Multiple Covariates
# Correct for multiple technical factors
scvi.model.SCVI.setup_anndata(
adata,
batch_key="sequencing_batch",
categorical_covariate_keys=["donor", "tissue"],
continuous_covariate_keys=["percent_mito"]
)
Strategy 3: Hierarchical Batches
# When batches have hierarchical structure
# E.g., samples within studies
adata.obs["batch_hierarchy"] = (
adata.obs["study"].astype(str) + "_" +
adata.obs["sample"].astype(str)
)
scvi.model.SCVI.setup_anndata(adata, batch_key="batch_hierarchy")
Reference Mapping (scArches)
Training Reference Model
# Train on reference dataset
scvi.model.SCVI.setup_anndata(ref_adata, batch_key="batch")
ref_model = scvi.model.SCVI(ref_adata)
ref_model.train()
# Save reference
ref_model.save("reference_model")
Mapping Query to Reference
# Load reference
ref_model = scvi.model.SCVI.load("reference_model", adata=ref_adata)
# Setup query with same parameters
scvi.model.SCVI.setup_anndata(query_adata, batch_key="batch")
# Transfer learning
query_model = scvi.model.SCVI.load_query_data(
query_adata,
"reference_model"
)
# Fine-tune on query (optional)
query_model.train(max_epochs=200)
# Get query embeddings
query_latent = query_model.get_latent_representation()
# Transfer labels using KNN
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=15)
knn.fit(ref_model.get_latent_representation(), ref_adata.obs["cell_type"])
query_adata.obs["predicted_cell_type"] = knn.predict(query_latent)
Model Minification
Reduce model size for faster inference:
# Train full model
model = scvi.model.SCVI(adata)
model.train()
# Minify for deployment
minified = model.minify_adata(adata)
# Save minified version
minified.write("minified_data.h5ad")
model.save("minified_model")
# Load and use (much faster)
mini_model = scvi.model.SCVI.load("minified_model", adata=minified)
Memory-Efficient Data Loading
Using AnnDataLoader
from scvi.data import AnnDataLoader
# For very large datasets
dataloader = AnnDataLoader(
adata,
batch_size=128,
shuffle=True,
drop_last=False
)
# Custom training loop (advanced)
for batch in dataloader:
# Process batch
pass
Using Backed AnnData
# For data too large for memory
adata = sc.read_h5ad("huge_dataset.h5ad", backed='r')
# scvi-tools works with backed mode
scvi.model.SCVI.setup_anndata(adata)
model = scvi.model.SCVI(adata)
model.train()
Model Interpretation
Feature Importance with SHAP
import shap
# Get SHAP values for interpretability
explainer = shap.DeepExplainer(model.module, background_data)
shap_values = explainer.shap_values(test_data)
# Visualize
shap.summary_plot(shap_values, feature_names=adata.var_names)
Gene Correlation Analysis
# Get gene-gene correlation matrix
correlation = model.get_feature_correlation_matrix(
adata,
transform_batch="batch1"
)
# Visualize top correlated genes
import seaborn as sns
sns.heatmap(correlation[:50, :50], cmap="coolwarm")
Troubleshooting Common Issues
Issue: NaN Loss During Training
Causes:
- Learning rate too high
- Unnormalized input (must use raw counts)
- Data quality issues
Solutions:
# Reduce learning rate
model.train(lr=0.0001)
# Check data
assert adata.X.min() >= 0 # No negative values
assert np.isnan(adata.X).sum() == 0 # No NaNs
# Use more stable likelihood
model = scvi.model.SCVI(adata, gene_likelihood="nb")
Issue: Poor Batch Correction
Solutions:
# Increase batch effect modeling
model = scvi.model.SCVI(
adata,
encode_covariates=True, # Encode batch in encoder
deeply_inject_covariates=False
)
# Or try opposite
model = scvi.model.SCVI(adata, deeply_inject_covariates=True)
# Use more latent dimensions
model = scvi.model.SCVI(adata, n_latent=50)
Issue: Model Not Training (ELBO Not Decreasing)
Solutions:
# Increase learning rate
model.train(lr=0.005)
# Increase network capacity
model = scvi.model.SCVI(adata, n_hidden=256, n_layers=2)
# Train longer
model.train(max_epochs=500)
Issue: Out of Memory (OOM)
Solutions:
# Reduce batch size
model.train(batch_size=64)
# Use mixed precision
model.train(precision=16)
# Reduce model size
model = scvi.model.SCVI(adata, n_latent=10, n_hidden=64)
# Use backed AnnData
adata = sc.read_h5ad("data.h5ad", backed='r')
Performance Benchmarking
import time
# Time training
start = time.time()
model.train(max_epochs=400)
training_time = time.time() - start
print(f"Training time: {training_time:.2f}s")
# Time inference
start = time.time()
latent = model.get_latent_representation()
inference_time = time.time() - start
print(f"Inference time: {inference_time:.2f}s")
# Memory usage
import psutil
import os
process = psutil.Process(os.getpid())
memory_gb = process.memory_info().rss / 1024**3
print(f"Memory usage: {memory_gb:.2f} GB")
Best Practices Summary
- Always use raw counts: Never log-normalize before scvi-tools
- Feature selection: Use highly variable genes for efficiency
- Batch correction: Register all known technical covariates
- Early stopping: Use validation set to prevent overfitting
- Model saving: Always save trained models
- GPU usage: Use GPU for large datasets (>10k cells)
- Hyperparameter tuning: Start with defaults, tune if needed
- Validation: Check batch correction visually (UMAP colored by batch)
- Documentation: Keep track of preprocessing steps
- Reproducibility: Set random seeds (
scvi.settings.seed = 0)