547 lines
12 KiB
Markdown
547 lines
12 KiB
Markdown
# Common Workflows and Best Practices
|
|
|
|
This document covers common workflows, best practices, and advanced usage patterns for scvi-tools.
|
|
|
|
## Standard Analysis Workflow
|
|
|
|
### 1. Data Loading and Preparation
|
|
|
|
```python
|
|
import scvi
|
|
import scanpy as sc
|
|
import numpy as np
|
|
|
|
# Load data (AnnData format required)
|
|
adata = sc.read_h5ad("data.h5ad")
|
|
# Or load from other formats
|
|
# adata = sc.read_10x_mtx("filtered_feature_bc_matrix/")
|
|
# adata = sc.read_csv("counts.csv")
|
|
|
|
# Basic QC metrics
|
|
sc.pp.calculate_qc_metrics(adata, inplace=True)
|
|
adata.var['mt'] = adata.var_names.str.startswith('MT-')
|
|
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], inplace=True)
|
|
```
|
|
|
|
### 2. Quality Control
|
|
|
|
```python
|
|
# Filter cells
|
|
sc.pp.filter_cells(adata, min_genes=200)
|
|
sc.pp.filter_cells(adata, max_genes=5000)
|
|
|
|
# Filter genes
|
|
sc.pp.filter_genes(adata, min_cells=3)
|
|
|
|
# Filter by mitochondrial content
|
|
adata = adata[adata.obs['pct_counts_mt'] < 20, :]
|
|
|
|
# Remove doublets (optional, before training)
|
|
sc.external.pp.scrublet(adata)
|
|
adata = adata[~adata.obs['predicted_doublet'], :]
|
|
```
|
|
|
|
### 3. Preprocessing for scvi-tools
|
|
|
|
```python
|
|
# IMPORTANT: scvi-tools needs RAW counts
|
|
# If you've already normalized, use the raw layer or reload data
|
|
|
|
# Save raw counts if not already available
|
|
if 'counts' not in adata.layers:
|
|
adata.layers['counts'] = adata.X.copy()
|
|
|
|
# Feature selection (optional but recommended)
|
|
sc.pp.highly_variable_genes(
|
|
adata,
|
|
n_top_genes=4000,
|
|
subset=False, # Keep all genes, just mark HVGs
|
|
batch_key="batch" # If multiple batches
|
|
)
|
|
|
|
# Filter to HVGs (optional)
|
|
# adata = adata[:, adata.var['highly_variable']]
|
|
```
|
|
|
|
### 4. Register Data with scvi-tools
|
|
|
|
```python
|
|
# Setup AnnData for scvi-tools
|
|
scvi.model.SCVI.setup_anndata(
|
|
adata,
|
|
layer="counts", # Use raw counts
|
|
batch_key="batch", # Technical batches
|
|
categorical_covariate_keys=["donor", "condition"],
|
|
continuous_covariate_keys=["percent_mito", "n_counts"]
|
|
)
|
|
|
|
# Check registration
|
|
adata.uns['_scvi']['summary_stats']
|
|
```
|
|
|
|
### 5. Model Training
|
|
|
|
```python
|
|
# Create model
|
|
model = scvi.model.SCVI(
|
|
adata,
|
|
n_latent=30, # Latent dimensions
|
|
n_layers=2, # Network depth
|
|
n_hidden=128, # Hidden layer size
|
|
dropout_rate=0.1,
|
|
gene_likelihood="zinb" # zero-inflated negative binomial
|
|
)
|
|
|
|
# Train model
|
|
model.train(
|
|
max_epochs=400,
|
|
batch_size=128,
|
|
train_size=0.9,
|
|
early_stopping=True,
|
|
check_val_every_n_epoch=10
|
|
)
|
|
|
|
# View training history
|
|
train_history = model.history["elbo_train"]
|
|
val_history = model.history["elbo_validation"]
|
|
```
|
|
|
|
### 6. Extract Results
|
|
|
|
```python
|
|
# Get latent representation
|
|
latent = model.get_latent_representation()
|
|
adata.obsm["X_scVI"] = latent
|
|
|
|
# Get normalized expression
|
|
normalized = model.get_normalized_expression(
|
|
adata,
|
|
library_size=1e4,
|
|
n_samples=25 # Monte Carlo samples
|
|
)
|
|
adata.layers["scvi_normalized"] = normalized
|
|
```
|
|
|
|
### 7. Downstream Analysis
|
|
|
|
```python
|
|
# Clustering on scVI latent space
|
|
sc.pp.neighbors(adata, use_rep="X_scVI", n_neighbors=15)
|
|
sc.tl.umap(adata, min_dist=0.3)
|
|
sc.tl.leiden(adata, resolution=0.8, key_added="leiden")
|
|
|
|
# Visualization
|
|
sc.pl.umap(adata, color=["leiden", "batch", "cell_type"])
|
|
|
|
# Differential expression
|
|
de_results = model.differential_expression(
|
|
groupby="leiden",
|
|
group1="0",
|
|
group2="1",
|
|
mode="change",
|
|
delta=0.25
|
|
)
|
|
```
|
|
|
|
### 8. Model Persistence
|
|
|
|
```python
|
|
# Save model
|
|
model_dir = "./scvi_model/"
|
|
model.save(model_dir, overwrite=True)
|
|
|
|
# Save AnnData with results
|
|
adata.write("analyzed_data.h5ad")
|
|
|
|
# Load model later
|
|
model = scvi.model.SCVI.load(model_dir, adata=adata)
|
|
```
|
|
|
|
## Hyperparameter Tuning
|
|
|
|
### Key Hyperparameters
|
|
|
|
**Architecture**:
|
|
- `n_latent`: Latent space dimensionality (10-50)
|
|
- Larger for complex, heterogeneous datasets
|
|
- Smaller for simple datasets or to prevent overfitting
|
|
- `n_layers`: Number of hidden layers (1-3)
|
|
- More layers for complex data, but diminishing returns
|
|
- `n_hidden`: Nodes per hidden layer (64-256)
|
|
- Scale with dataset size and complexity
|
|
|
|
**Training**:
|
|
- `max_epochs`: Training iterations (200-500)
|
|
- Use early stopping to prevent overfitting
|
|
- `batch_size`: Samples per batch (64-256)
|
|
- Larger for big datasets, smaller for limited memory
|
|
- `lr`: Learning rate (0.001 default, usually good)
|
|
|
|
**Model-specific**:
|
|
- `gene_likelihood`: Distribution ("zinb", "nb", "poisson")
|
|
- "zinb" for sparse data with zero-inflation
|
|
- "nb" for less sparse data
|
|
- `dispersion`: Gene or gene-batch specific
|
|
- "gene" for simple, "gene-batch" for complex batch effects
|
|
|
|
### Hyperparameter Search Example
|
|
|
|
```python
|
|
from scvi.model import SCVI
|
|
|
|
# Define search space
|
|
latent_dims = [10, 20, 30]
|
|
n_layers_options = [1, 2]
|
|
|
|
best_score = float('-inf')
|
|
best_params = None
|
|
|
|
for n_latent in latent_dims:
|
|
for n_layers in n_layers_options:
|
|
model = SCVI(
|
|
adata,
|
|
n_latent=n_latent,
|
|
n_layers=n_layers
|
|
)
|
|
model.train(max_epochs=200)
|
|
|
|
# Evaluate on validation set
|
|
val_elbo = model.history["elbo_validation"][-1]
|
|
|
|
if val_elbo > best_score:
|
|
best_score = val_elbo
|
|
best_params = {"n_latent": n_latent, "n_layers": n_layers}
|
|
|
|
print(f"Best params: {best_params}")
|
|
```
|
|
|
|
### Using Optuna for Hyperparameter Optimization
|
|
|
|
```python
|
|
import optuna
|
|
|
|
def objective(trial):
|
|
n_latent = trial.suggest_int("n_latent", 10, 50)
|
|
n_layers = trial.suggest_int("n_layers", 1, 3)
|
|
n_hidden = trial.suggest_categorical("n_hidden", [64, 128, 256])
|
|
|
|
model = scvi.model.SCVI(
|
|
adata,
|
|
n_latent=n_latent,
|
|
n_layers=n_layers,
|
|
n_hidden=n_hidden
|
|
)
|
|
|
|
model.train(max_epochs=200, early_stopping=True)
|
|
return model.history["elbo_validation"][-1]
|
|
|
|
study = optuna.create_study(direction="maximize")
|
|
study.optimize(objective, n_trials=20)
|
|
|
|
print(f"Best parameters: {study.best_params}")
|
|
```
|
|
|
|
## GPU Acceleration
|
|
|
|
### Enable GPU Training
|
|
|
|
```python
|
|
# Automatic GPU detection
|
|
model = scvi.model.SCVI(adata)
|
|
model.train(accelerator="auto") # Uses GPU if available
|
|
|
|
# Force GPU
|
|
model.train(accelerator="gpu")
|
|
|
|
# Multi-GPU
|
|
model.train(accelerator="gpu", devices=2)
|
|
|
|
# Check if GPU is being used
|
|
import torch
|
|
print(f"CUDA available: {torch.cuda.is_available()}")
|
|
print(f"GPU count: {torch.cuda.device_count()}")
|
|
```
|
|
|
|
### GPU Memory Management
|
|
|
|
```python
|
|
# Reduce batch size if OOM
|
|
model.train(batch_size=64) # Instead of default 128
|
|
|
|
# Mixed precision training (saves memory)
|
|
model.train(precision=16)
|
|
|
|
# Clear cache between runs
|
|
import torch
|
|
torch.cuda.empty_cache()
|
|
```
|
|
|
|
## Batch Integration Strategies
|
|
|
|
### Strategy 1: Simple Batch Key
|
|
|
|
```python
|
|
# For standard batch correction
|
|
scvi.model.SCVI.setup_anndata(adata, batch_key="batch")
|
|
model = scvi.model.SCVI(adata)
|
|
```
|
|
|
|
### Strategy 2: Multiple Covariates
|
|
|
|
```python
|
|
# Correct for multiple technical factors
|
|
scvi.model.SCVI.setup_anndata(
|
|
adata,
|
|
batch_key="sequencing_batch",
|
|
categorical_covariate_keys=["donor", "tissue"],
|
|
continuous_covariate_keys=["percent_mito"]
|
|
)
|
|
```
|
|
|
|
### Strategy 3: Hierarchical Batches
|
|
|
|
```python
|
|
# When batches have hierarchical structure
|
|
# E.g., samples within studies
|
|
adata.obs["batch_hierarchy"] = (
|
|
adata.obs["study"].astype(str) + "_" +
|
|
adata.obs["sample"].astype(str)
|
|
)
|
|
|
|
scvi.model.SCVI.setup_anndata(adata, batch_key="batch_hierarchy")
|
|
```
|
|
|
|
## Reference Mapping (scArches)
|
|
|
|
### Training Reference Model
|
|
|
|
```python
|
|
# Train on reference dataset
|
|
scvi.model.SCVI.setup_anndata(ref_adata, batch_key="batch")
|
|
ref_model = scvi.model.SCVI(ref_adata)
|
|
ref_model.train()
|
|
|
|
# Save reference
|
|
ref_model.save("reference_model")
|
|
```
|
|
|
|
### Mapping Query to Reference
|
|
|
|
```python
|
|
# Load reference
|
|
ref_model = scvi.model.SCVI.load("reference_model", adata=ref_adata)
|
|
|
|
# Setup query with same parameters
|
|
scvi.model.SCVI.setup_anndata(query_adata, batch_key="batch")
|
|
|
|
# Transfer learning
|
|
query_model = scvi.model.SCVI.load_query_data(
|
|
query_adata,
|
|
"reference_model"
|
|
)
|
|
|
|
# Fine-tune on query (optional)
|
|
query_model.train(max_epochs=200)
|
|
|
|
# Get query embeddings
|
|
query_latent = query_model.get_latent_representation()
|
|
|
|
# Transfer labels using KNN
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
|
|
knn = KNeighborsClassifier(n_neighbors=15)
|
|
knn.fit(ref_model.get_latent_representation(), ref_adata.obs["cell_type"])
|
|
query_adata.obs["predicted_cell_type"] = knn.predict(query_latent)
|
|
```
|
|
|
|
## Model Minification
|
|
|
|
Reduce model size for faster inference:
|
|
|
|
```python
|
|
# Train full model
|
|
model = scvi.model.SCVI(adata)
|
|
model.train()
|
|
|
|
# Minify for deployment
|
|
minified = model.minify_adata(adata)
|
|
|
|
# Save minified version
|
|
minified.write("minified_data.h5ad")
|
|
model.save("minified_model")
|
|
|
|
# Load and use (much faster)
|
|
mini_model = scvi.model.SCVI.load("minified_model", adata=minified)
|
|
```
|
|
|
|
## Memory-Efficient Data Loading
|
|
|
|
### Using AnnDataLoader
|
|
|
|
```python
|
|
from scvi.data import AnnDataLoader
|
|
|
|
# For very large datasets
|
|
dataloader = AnnDataLoader(
|
|
adata,
|
|
batch_size=128,
|
|
shuffle=True,
|
|
drop_last=False
|
|
)
|
|
|
|
# Custom training loop (advanced)
|
|
for batch in dataloader:
|
|
# Process batch
|
|
pass
|
|
```
|
|
|
|
### Using Backed AnnData
|
|
|
|
```python
|
|
# For data too large for memory
|
|
adata = sc.read_h5ad("huge_dataset.h5ad", backed='r')
|
|
|
|
# scvi-tools works with backed mode
|
|
scvi.model.SCVI.setup_anndata(adata)
|
|
model = scvi.model.SCVI(adata)
|
|
model.train()
|
|
```
|
|
|
|
## Model Interpretation
|
|
|
|
### Feature Importance with SHAP
|
|
|
|
```python
|
|
import shap
|
|
|
|
# Get SHAP values for interpretability
|
|
explainer = shap.DeepExplainer(model.module, background_data)
|
|
shap_values = explainer.shap_values(test_data)
|
|
|
|
# Visualize
|
|
shap.summary_plot(shap_values, feature_names=adata.var_names)
|
|
```
|
|
|
|
### Gene Correlation Analysis
|
|
|
|
```python
|
|
# Get gene-gene correlation matrix
|
|
correlation = model.get_feature_correlation_matrix(
|
|
adata,
|
|
transform_batch="batch1"
|
|
)
|
|
|
|
# Visualize top correlated genes
|
|
import seaborn as sns
|
|
sns.heatmap(correlation[:50, :50], cmap="coolwarm")
|
|
```
|
|
|
|
## Troubleshooting Common Issues
|
|
|
|
### Issue: NaN Loss During Training
|
|
|
|
**Causes**:
|
|
- Learning rate too high
|
|
- Unnormalized input (must use raw counts)
|
|
- Data quality issues
|
|
|
|
**Solutions**:
|
|
```python
|
|
# Reduce learning rate
|
|
model.train(lr=0.0001)
|
|
|
|
# Check data
|
|
assert adata.X.min() >= 0 # No negative values
|
|
assert np.isnan(adata.X).sum() == 0 # No NaNs
|
|
|
|
# Use more stable likelihood
|
|
model = scvi.model.SCVI(adata, gene_likelihood="nb")
|
|
```
|
|
|
|
### Issue: Poor Batch Correction
|
|
|
|
**Solutions**:
|
|
```python
|
|
# Increase batch effect modeling
|
|
model = scvi.model.SCVI(
|
|
adata,
|
|
encode_covariates=True, # Encode batch in encoder
|
|
deeply_inject_covariates=False
|
|
)
|
|
|
|
# Or try opposite
|
|
model = scvi.model.SCVI(adata, deeply_inject_covariates=True)
|
|
|
|
# Use more latent dimensions
|
|
model = scvi.model.SCVI(adata, n_latent=50)
|
|
```
|
|
|
|
### Issue: Model Not Training (ELBO Not Decreasing)
|
|
|
|
**Solutions**:
|
|
```python
|
|
# Increase learning rate
|
|
model.train(lr=0.005)
|
|
|
|
# Increase network capacity
|
|
model = scvi.model.SCVI(adata, n_hidden=256, n_layers=2)
|
|
|
|
# Train longer
|
|
model.train(max_epochs=500)
|
|
```
|
|
|
|
### Issue: Out of Memory (OOM)
|
|
|
|
**Solutions**:
|
|
```python
|
|
# Reduce batch size
|
|
model.train(batch_size=64)
|
|
|
|
# Use mixed precision
|
|
model.train(precision=16)
|
|
|
|
# Reduce model size
|
|
model = scvi.model.SCVI(adata, n_latent=10, n_hidden=64)
|
|
|
|
# Use backed AnnData
|
|
adata = sc.read_h5ad("data.h5ad", backed='r')
|
|
```
|
|
|
|
## Performance Benchmarking
|
|
|
|
```python
|
|
import time
|
|
|
|
# Time training
|
|
start = time.time()
|
|
model.train(max_epochs=400)
|
|
training_time = time.time() - start
|
|
print(f"Training time: {training_time:.2f}s")
|
|
|
|
# Time inference
|
|
start = time.time()
|
|
latent = model.get_latent_representation()
|
|
inference_time = time.time() - start
|
|
print(f"Inference time: {inference_time:.2f}s")
|
|
|
|
# Memory usage
|
|
import psutil
|
|
import os
|
|
process = psutil.Process(os.getpid())
|
|
memory_gb = process.memory_info().rss / 1024**3
|
|
print(f"Memory usage: {memory_gb:.2f} GB")
|
|
```
|
|
|
|
## Best Practices Summary
|
|
|
|
1. **Always use raw counts**: Never log-normalize before scvi-tools
|
|
2. **Feature selection**: Use highly variable genes for efficiency
|
|
3. **Batch correction**: Register all known technical covariates
|
|
4. **Early stopping**: Use validation set to prevent overfitting
|
|
5. **Model saving**: Always save trained models
|
|
6. **GPU usage**: Use GPU for large datasets (>10k cells)
|
|
7. **Hyperparameter tuning**: Start with defaults, tune if needed
|
|
8. **Validation**: Check batch correction visually (UMAP colored by batch)
|
|
9. **Documentation**: Keep track of preprocessing steps
|
|
10. **Reproducibility**: Set random seeds (`scvi.settings.seed = 0`)
|