750 lines
18 KiB
Markdown
750 lines
18 KiB
Markdown
# scikit-bio API Reference
|
|
|
|
This document provides detailed API information, advanced examples, and troubleshooting guidance for working with scikit-bio.
|
|
|
|
## Table of Contents
|
|
1. [Sequence Classes](#sequence-classes)
|
|
2. [Alignment Methods](#alignment-methods)
|
|
3. [Phylogenetic Trees](#phylogenetic-trees)
|
|
4. [Diversity Metrics](#diversity-metrics)
|
|
5. [Ordination](#ordination)
|
|
6. [Statistical Tests](#statistical-tests)
|
|
7. [Distance Matrices](#distance-matrices)
|
|
8. [File I/O](#file-io)
|
|
9. [Troubleshooting](#troubleshooting)
|
|
|
|
## Sequence Classes
|
|
|
|
### DNA, RNA, and Protein Classes
|
|
|
|
```python
|
|
from skbio import DNA, RNA, Protein, Sequence
|
|
|
|
# Creating sequences
|
|
dna = DNA('ATCGATCG', metadata={'id': 'seq1', 'description': 'Example'})
|
|
rna = RNA('AUCGAUCG')
|
|
protein = Protein('ACDEFGHIKLMNPQRSTVWY')
|
|
|
|
# Sequence operations
|
|
dna_rc = dna.reverse_complement() # Reverse complement
|
|
rna = dna.transcribe() # DNA -> RNA
|
|
protein = rna.translate() # RNA -> Protein
|
|
|
|
# Using genetic code tables
|
|
protein = rna.translate(genetic_code=11) # Bacterial code
|
|
```
|
|
|
|
### Sequence Searching and Pattern Matching
|
|
|
|
```python
|
|
# Find motifs using regex
|
|
dna = DNA('ATGCGATCGATGCATCG')
|
|
motif_locs = dna.find_with_regex('ATG.{3}') # Start codons
|
|
|
|
# Find all positions
|
|
import re
|
|
for match in re.finditer('ATG', str(dna)):
|
|
print(f"ATG found at position {match.start()}")
|
|
|
|
# k-mer counting
|
|
from skbio.sequence import _motifs
|
|
kmers = dna.kmer_frequencies(k=3)
|
|
```
|
|
|
|
### Handling Sequence Metadata
|
|
|
|
```python
|
|
# Sequence-level metadata
|
|
dna = DNA('ATCG', metadata={'id': 'seq1', 'source': 'E. coli'})
|
|
print(dna.metadata['id'])
|
|
|
|
# Positional metadata (per-base quality scores from FASTQ)
|
|
from skbio import DNA
|
|
seqs = DNA.read('reads.fastq', format='fastq', phred_offset=33)
|
|
quality_scores = seqs.positional_metadata['quality']
|
|
|
|
# Interval metadata (features/annotations)
|
|
dna.interval_metadata.add([(5, 15)], metadata={'type': 'gene', 'name': 'geneA'})
|
|
```
|
|
|
|
### Distance Calculations
|
|
|
|
```python
|
|
from skbio import DNA
|
|
|
|
seq1 = DNA('ATCGATCG')
|
|
seq2 = DNA('ATCG--CG')
|
|
|
|
# Hamming distance (default)
|
|
dist = seq1.distance(seq2)
|
|
|
|
# Custom distance function
|
|
from skbio.sequence.distance import kmer_distance
|
|
dist = seq1.distance(seq2, metric=kmer_distance)
|
|
```
|
|
|
|
## Alignment Methods
|
|
|
|
### Pairwise Alignment
|
|
|
|
```python
|
|
from skbio.alignment import local_pairwise_align_ssw, global_pairwise_align
|
|
from skbio import DNA, Protein
|
|
|
|
# Local alignment (Smith-Waterman via SSW)
|
|
seq1 = DNA('ATCGATCGATCG')
|
|
seq2 = DNA('ATCGGGGATCG')
|
|
alignment = local_pairwise_align_ssw(seq1, seq2)
|
|
|
|
# Access alignment details
|
|
print(f"Score: {alignment.score}")
|
|
print(f"Start position: {alignment.target_begin}")
|
|
aligned_seqs = alignment.aligned_sequences
|
|
|
|
# Global alignment with custom scoring
|
|
from skbio.alignment import AlignScorer
|
|
|
|
scorer = AlignScorer(
|
|
match_score=2,
|
|
mismatch_score=-3,
|
|
gap_open_penalty=5,
|
|
gap_extend_penalty=2
|
|
)
|
|
|
|
alignment = global_pairwise_align(seq1, seq2, scorer=scorer)
|
|
|
|
# Protein alignment with substitution matrix
|
|
from skbio.alignment import StripedSmithWaterman
|
|
|
|
protein_query = Protein('ACDEFGHIKLMNPQRSTVWY')
|
|
protein_target = Protein('ACDEFMNPQRSTVWY')
|
|
|
|
aligner = StripedSmithWaterman(
|
|
str(protein_query),
|
|
gap_open_penalty=11,
|
|
gap_extend_penalty=1,
|
|
substitution_matrix='blosum62'
|
|
)
|
|
alignment = aligner(str(protein_target))
|
|
```
|
|
|
|
### Multiple Sequence Alignment
|
|
|
|
```python
|
|
from skbio.alignment import TabularMSA
|
|
from skbio import DNA
|
|
|
|
# Read MSA from file
|
|
msa = TabularMSA.read('alignment.fasta', constructor=DNA)
|
|
|
|
# Create MSA manually
|
|
seqs = [
|
|
DNA('ATCG--'),
|
|
DNA('ATGG--'),
|
|
DNA('ATCGAT')
|
|
]
|
|
msa = TabularMSA(seqs)
|
|
|
|
# MSA operations
|
|
consensus = msa.consensus()
|
|
majority_consensus = msa.majority_consensus()
|
|
|
|
# Calculate conservation
|
|
conservation = msa.conservation()
|
|
|
|
# Access sequences
|
|
first_seq = msa[0]
|
|
column = msa[:, 2] # Third column
|
|
|
|
# Filter gaps
|
|
degapped_msa = msa.omit_gap_positions(maximum_gap_frequency=0.5)
|
|
|
|
# Calculate position-specific scores
|
|
position_entropies = msa.position_entropies()
|
|
```
|
|
|
|
### CIGAR String Handling
|
|
|
|
```python
|
|
from skbio.alignment import AlignPath
|
|
|
|
# Parse CIGAR string
|
|
cigar = "10M2I5M3D10M"
|
|
align_path = AlignPath.from_cigar(cigar, target_length=100, query_length=50)
|
|
|
|
# Convert alignment to CIGAR
|
|
alignment = local_pairwise_align_ssw(seq1, seq2)
|
|
cigar_string = alignment.to_cigar()
|
|
```
|
|
|
|
## Phylogenetic Trees
|
|
|
|
### Tree Construction
|
|
|
|
```python
|
|
from skbio import TreeNode, DistanceMatrix
|
|
from skbio.tree import nj, upgma
|
|
|
|
# Distance matrix
|
|
dm = DistanceMatrix([[0, 5, 9, 9],
|
|
[5, 0, 10, 10],
|
|
[9, 10, 0, 8],
|
|
[9, 10, 8, 0]],
|
|
ids=['A', 'B', 'C', 'D'])
|
|
|
|
# Neighbor joining
|
|
nj_tree = nj(dm)
|
|
|
|
# UPGMA (assumes molecular clock)
|
|
upgma_tree = upgma(dm)
|
|
|
|
# Balanced Minimum Evolution (scalable for large trees)
|
|
from skbio.tree import bme
|
|
bme_tree = bme(dm)
|
|
```
|
|
|
|
### Tree Manipulation
|
|
|
|
```python
|
|
from skbio import TreeNode
|
|
|
|
# Read tree
|
|
tree = TreeNode.read('tree.nwk', format='newick')
|
|
|
|
# Traversal
|
|
for node in tree.traverse():
|
|
print(node.name)
|
|
|
|
# Preorder, postorder, levelorder
|
|
for node in tree.preorder():
|
|
print(node.name)
|
|
|
|
# Get tips only
|
|
tips = list(tree.tips())
|
|
|
|
# Find specific node
|
|
node = tree.find('taxon_name')
|
|
|
|
# Root tree at midpoint
|
|
rooted_tree = tree.root_at_midpoint()
|
|
|
|
# Prune tree to specific taxa
|
|
pruned = tree.shear(['taxon1', 'taxon2', 'taxon3'])
|
|
|
|
# Get subtree
|
|
lca = tree.lowest_common_ancestor(['taxon1', 'taxon2'])
|
|
subtree = lca.copy()
|
|
|
|
# Add/remove nodes
|
|
parent = tree.find('parent_name')
|
|
child = TreeNode(name='new_child', length=0.5)
|
|
parent.append(child)
|
|
|
|
# Remove node
|
|
node_to_remove = tree.find('taxon_to_remove')
|
|
node_to_remove.parent.remove(node_to_remove)
|
|
```
|
|
|
|
### Tree Distances and Comparisons
|
|
|
|
```python
|
|
# Patristic distance (branch-length distance)
|
|
node1 = tree.find('taxon1')
|
|
node2 = tree.find('taxon2')
|
|
patristic = node1.distance(node2)
|
|
|
|
# Cophenetic matrix (all pairwise distances)
|
|
cophenetic_dm = tree.cophenetic_matrix()
|
|
|
|
# Robinson-Foulds distance (topology comparison)
|
|
rf_dist = tree.robinson_foulds(other_tree)
|
|
|
|
# Compare with unweighted RF
|
|
rf_dist, max_rf = tree.robinson_foulds(other_tree, proportion=False)
|
|
|
|
# Tip-to-tip distances
|
|
tip_distances = tree.tip_tip_distances()
|
|
```
|
|
|
|
### Tree Visualization
|
|
|
|
```python
|
|
# ASCII art visualization
|
|
print(tree.ascii_art())
|
|
|
|
# For advanced visualization, export to external tools
|
|
tree.write('tree.nwk', format='newick')
|
|
|
|
# Then use ete3, toytree, or ggtree for publication-quality figures
|
|
```
|
|
|
|
## Diversity Metrics
|
|
|
|
### Alpha Diversity
|
|
|
|
```python
|
|
from skbio.diversity import alpha_diversity, get_alpha_diversity_metrics
|
|
import numpy as np
|
|
|
|
# Sample count data (samples x features)
|
|
counts = np.array([
|
|
[10, 5, 0, 3],
|
|
[2, 0, 8, 4],
|
|
[5, 5, 5, 5]
|
|
])
|
|
sample_ids = ['Sample1', 'Sample2', 'Sample3']
|
|
|
|
# List available metrics
|
|
print(get_alpha_diversity_metrics())
|
|
|
|
# Calculate various alpha diversity metrics
|
|
shannon = alpha_diversity('shannon', counts, ids=sample_ids)
|
|
simpson = alpha_diversity('simpson', counts, ids=sample_ids)
|
|
observed_otus = alpha_diversity('observed_otus', counts, ids=sample_ids)
|
|
chao1 = alpha_diversity('chao1', counts, ids=sample_ids)
|
|
|
|
# Phylogenetic alpha diversity (requires tree)
|
|
from skbio import TreeNode
|
|
|
|
tree = TreeNode.read('tree.nwk')
|
|
feature_ids = ['OTU1', 'OTU2', 'OTU3', 'OTU4']
|
|
|
|
faith_pd = alpha_diversity('faith_pd', counts, ids=sample_ids,
|
|
tree=tree, otu_ids=feature_ids)
|
|
```
|
|
|
|
### Beta Diversity
|
|
|
|
```python
|
|
from skbio.diversity import beta_diversity, partial_beta_diversity
|
|
|
|
# Beta diversity (all pairwise comparisons)
|
|
bc_dm = beta_diversity('braycurtis', counts, ids=sample_ids)
|
|
|
|
# Jaccard (presence/absence)
|
|
jaccard_dm = beta_diversity('jaccard', counts, ids=sample_ids)
|
|
|
|
# Phylogenetic beta diversity
|
|
unifrac_dm = beta_diversity('unweighted_unifrac', counts,
|
|
ids=sample_ids,
|
|
tree=tree,
|
|
otu_ids=feature_ids)
|
|
|
|
weighted_unifrac_dm = beta_diversity('weighted_unifrac', counts,
|
|
ids=sample_ids,
|
|
tree=tree,
|
|
otu_ids=feature_ids)
|
|
|
|
# Compute only specific pairs (more efficient)
|
|
pairs = [('Sample1', 'Sample2'), ('Sample1', 'Sample3')]
|
|
partial_dm = partial_beta_diversity('braycurtis', counts,
|
|
ids=sample_ids,
|
|
id_pairs=pairs)
|
|
```
|
|
|
|
### Rarefaction and Subsampling
|
|
|
|
```python
|
|
from skbio.diversity import subsample_counts
|
|
|
|
# Rarefy to minimum depth
|
|
min_depth = counts.min(axis=1).max()
|
|
rarefied = [subsample_counts(row, n=min_depth) for row in counts]
|
|
|
|
# Multiple rarefactions for confidence intervals
|
|
import numpy as np
|
|
rarefactions = []
|
|
for i in range(100):
|
|
rarefied_counts = np.array([subsample_counts(row, n=1000) for row in counts])
|
|
shannon_rare = alpha_diversity('shannon', rarefied_counts)
|
|
rarefactions.append(shannon_rare)
|
|
|
|
# Calculate mean and std
|
|
mean_shannon = np.mean(rarefactions, axis=0)
|
|
std_shannon = np.std(rarefactions, axis=0)
|
|
```
|
|
|
|
## Ordination
|
|
|
|
### Principal Coordinate Analysis (PCoA)
|
|
|
|
```python
|
|
from skbio.stats.ordination import pcoa
|
|
from skbio import DistanceMatrix
|
|
import numpy as np
|
|
|
|
# PCoA from distance matrix
|
|
dm = DistanceMatrix(...)
|
|
pcoa_results = pcoa(dm)
|
|
|
|
# Access coordinates
|
|
pc1 = pcoa_results.samples['PC1']
|
|
pc2 = pcoa_results.samples['PC2']
|
|
|
|
# Proportion explained
|
|
prop_explained = pcoa_results.proportion_explained
|
|
|
|
# Eigenvalues
|
|
eigenvalues = pcoa_results.eigvals
|
|
|
|
# Save results
|
|
pcoa_results.write('pcoa_results.txt')
|
|
|
|
# Plot with matplotlib
|
|
import matplotlib.pyplot as plt
|
|
plt.scatter(pc1, pc2)
|
|
plt.xlabel(f'PC1 ({prop_explained[0]*100:.1f}%)')
|
|
plt.ylabel(f'PC2 ({prop_explained[1]*100:.1f}%)')
|
|
```
|
|
|
|
### Canonical Correspondence Analysis (CCA)
|
|
|
|
```python
|
|
from skbio.stats.ordination import cca
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
# Species abundance matrix (samples x species)
|
|
species = np.array([
|
|
[10, 5, 3],
|
|
[2, 8, 4],
|
|
[5, 5, 5]
|
|
])
|
|
|
|
# Environmental variables (samples x variables)
|
|
env = pd.DataFrame({
|
|
'pH': [6.5, 7.0, 6.8],
|
|
'temperature': [20, 25, 22],
|
|
'depth': [10, 15, 12]
|
|
})
|
|
|
|
# CCA
|
|
cca_results = cca(species, env,
|
|
sample_ids=['Site1', 'Site2', 'Site3'],
|
|
species_ids=['SpeciesA', 'SpeciesB', 'SpeciesC'])
|
|
|
|
# Access constrained axes
|
|
cca1 = cca_results.samples['CCA1']
|
|
cca2 = cca_results.samples['CCA2']
|
|
|
|
# Biplot scores for environmental variables
|
|
env_scores = cca_results.biplot_scores
|
|
```
|
|
|
|
### Redundancy Analysis (RDA)
|
|
|
|
```python
|
|
from skbio.stats.ordination import rda
|
|
|
|
# Similar to CCA but for linear relationships
|
|
rda_results = rda(species, env,
|
|
sample_ids=['Site1', 'Site2', 'Site3'],
|
|
species_ids=['SpeciesA', 'SpeciesB', 'SpeciesC'])
|
|
```
|
|
|
|
## Statistical Tests
|
|
|
|
### PERMANOVA
|
|
|
|
```python
|
|
from skbio.stats.distance import permanova
|
|
from skbio import DistanceMatrix
|
|
import numpy as np
|
|
|
|
# Distance matrix
|
|
dm = DistanceMatrix(...)
|
|
|
|
# Grouping variable
|
|
grouping = ['Group1', 'Group1', 'Group2', 'Group2', 'Group3', 'Group3']
|
|
|
|
# Run PERMANOVA
|
|
results = permanova(dm, grouping, permutations=999)
|
|
|
|
print(f"Test statistic: {results['test statistic']}")
|
|
print(f"p-value: {results['p-value']}")
|
|
print(f"Sample size: {results['sample size']}")
|
|
print(f"Number of groups: {results['number of groups']}")
|
|
```
|
|
|
|
### ANOSIM
|
|
|
|
```python
|
|
from skbio.stats.distance import anosim
|
|
|
|
# ANOSIM test
|
|
results = anosim(dm, grouping, permutations=999)
|
|
|
|
print(f"R statistic: {results['test statistic']}")
|
|
print(f"p-value: {results['p-value']}")
|
|
```
|
|
|
|
### PERMDISP
|
|
|
|
```python
|
|
from skbio.stats.distance import permdisp
|
|
|
|
# Test homogeneity of dispersions
|
|
results = permdisp(dm, grouping, permutations=999)
|
|
|
|
print(f"F statistic: {results['test statistic']}")
|
|
print(f"p-value: {results['p-value']}")
|
|
```
|
|
|
|
### Mantel Test
|
|
|
|
```python
|
|
from skbio.stats.distance import mantel
|
|
from skbio import DistanceMatrix
|
|
|
|
# Two distance matrices to compare
|
|
dm1 = DistanceMatrix(...) # e.g., genetic distance
|
|
dm2 = DistanceMatrix(...) # e.g., geographic distance
|
|
|
|
# Mantel test
|
|
r, p_value, n = mantel(dm1, dm2, method='pearson', permutations=999)
|
|
|
|
print(f"Correlation: {r}")
|
|
print(f"p-value: {p_value}")
|
|
print(f"Sample size: {n}")
|
|
|
|
# Spearman correlation
|
|
r_spearman, p, n = mantel(dm1, dm2, method='spearman', permutations=999)
|
|
```
|
|
|
|
### Partial Mantel Test
|
|
|
|
```python
|
|
from skbio.stats.distance import mantel
|
|
|
|
# Control for a third matrix
|
|
dm3 = DistanceMatrix(...) # controlling variable
|
|
|
|
r_partial, p_value, n = mantel(dm1, dm2, method='pearson',
|
|
permutations=999, alternative='two-sided')
|
|
```
|
|
|
|
## Distance Matrices
|
|
|
|
### Creating and Manipulating Distance Matrices
|
|
|
|
```python
|
|
from skbio import DistanceMatrix, DissimilarityMatrix
|
|
import numpy as np
|
|
|
|
# Create from array
|
|
data = np.array([[0, 1, 2],
|
|
[1, 0, 3],
|
|
[2, 3, 0]])
|
|
dm = DistanceMatrix(data, ids=['A', 'B', 'C'])
|
|
|
|
# Access elements
|
|
dist_ab = dm['A', 'B']
|
|
row_a = dm['A']
|
|
|
|
# Slicing
|
|
subset_dm = dm.filter(['A', 'C'])
|
|
|
|
# Asymmetric dissimilarity matrix
|
|
asym_data = np.array([[0, 1, 2],
|
|
[3, 0, 4],
|
|
[5, 6, 0]])
|
|
dissim = DissimilarityMatrix(asym_data, ids=['X', 'Y', 'Z'])
|
|
|
|
# Read/write
|
|
dm.write('distances.txt')
|
|
dm2 = DistanceMatrix.read('distances.txt')
|
|
|
|
# Convert to condensed form (for scipy)
|
|
condensed = dm.condensed_form()
|
|
|
|
# Convert to dataframe
|
|
df = dm.to_data_frame()
|
|
```
|
|
|
|
## File I/O
|
|
|
|
### Reading Sequences
|
|
|
|
```python
|
|
import skbio
|
|
|
|
# Read single sequence
|
|
dna = skbio.DNA.read('sequence.fasta', format='fasta')
|
|
|
|
# Read multiple sequences (generator)
|
|
for seq in skbio.io.read('sequences.fasta', format='fasta', constructor=skbio.DNA):
|
|
print(seq.metadata['id'], len(seq))
|
|
|
|
# Read into list
|
|
sequences = list(skbio.io.read('sequences.fasta', format='fasta',
|
|
constructor=skbio.DNA))
|
|
|
|
# Read FASTQ with quality scores
|
|
for seq in skbio.io.read('reads.fastq', format='fastq', constructor=skbio.DNA):
|
|
quality = seq.positional_metadata['quality']
|
|
print(f"Mean quality: {quality.mean()}")
|
|
```
|
|
|
|
### Writing Sequences
|
|
|
|
```python
|
|
# Write single sequence
|
|
dna.write('output.fasta', format='fasta')
|
|
|
|
# Write multiple sequences
|
|
sequences = [dna1, dna2, dna3]
|
|
skbio.io.write(sequences, format='fasta', into='output.fasta')
|
|
|
|
# Write with custom line wrapping
|
|
dna.write('output.fasta', format='fasta', max_width=60)
|
|
```
|
|
|
|
### BIOM Tables
|
|
|
|
```python
|
|
from skbio import Table
|
|
|
|
# Read BIOM table
|
|
table = Table.read('table.biom', format='hdf5')
|
|
|
|
# Access data
|
|
sample_ids = table.ids(axis='sample')
|
|
feature_ids = table.ids(axis='observation')
|
|
matrix = table.matrix_data.toarray() # if sparse
|
|
|
|
# Filter samples
|
|
abundant_samples = table.filter(lambda row, id_, md: row.sum() > 1000, axis='sample')
|
|
|
|
# Filter features (OTUs/ASVs)
|
|
prevalent_features = table.filter(lambda col, id_, md: (col > 0).sum() >= 3,
|
|
axis='observation')
|
|
|
|
# Normalize
|
|
relative_abundance = table.norm(axis='sample', inplace=False)
|
|
|
|
# Write
|
|
table.write('filtered_table.biom', format='hdf5')
|
|
```
|
|
|
|
### Format Conversion
|
|
|
|
```python
|
|
# FASTQ to FASTA
|
|
seqs = skbio.io.read('input.fastq', format='fastq', constructor=skbio.DNA)
|
|
skbio.io.write(seqs, format='fasta', into='output.fasta')
|
|
|
|
# GenBank to FASTA
|
|
seqs = skbio.io.read('genes.gb', format='genbank', constructor=skbio.DNA)
|
|
skbio.io.write(seqs, format='fasta', into='genes.fasta')
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### Common Issues and Solutions
|
|
|
|
#### Issue: "ValueError: Ids must be unique"
|
|
```python
|
|
# Problem: Duplicate sequence IDs
|
|
# Solution: Make IDs unique or filter duplicates
|
|
seen = set()
|
|
unique_seqs = []
|
|
for seq in sequences:
|
|
if seq.metadata['id'] not in seen:
|
|
unique_seqs.append(seq)
|
|
seen.add(seq.metadata['id'])
|
|
```
|
|
|
|
#### Issue: "ValueError: Counts must be integers"
|
|
```python
|
|
# Problem: Relative abundances instead of counts
|
|
# Solution: Convert to integer counts or use appropriate metrics
|
|
counts_int = (abundance_table * 1000).astype(int)
|
|
```
|
|
|
|
#### Issue: Memory error with large files
|
|
```python
|
|
# Problem: Loading entire file into memory
|
|
# Solution: Use generators
|
|
for seq in skbio.io.read('huge.fasta', format='fasta', constructor=skbio.DNA):
|
|
# Process one at a time
|
|
process(seq)
|
|
```
|
|
|
|
#### Issue: Tree tips don't match OTU IDs
|
|
```python
|
|
# Problem: Mismatch between tree tip names and feature IDs
|
|
# Solution: Verify and align IDs
|
|
tree_tips = {tip.name for tip in tree.tips()}
|
|
feature_ids = set(feature_ids)
|
|
missing_in_tree = feature_ids - tree_tips
|
|
missing_in_table = tree_tips - feature_ids
|
|
|
|
# Prune tree to match table
|
|
tree_pruned = tree.shear(feature_ids)
|
|
```
|
|
|
|
#### Issue: Alignment fails with sequences of different lengths
|
|
```python
|
|
# Problem: Trying to align pre-aligned sequences
|
|
# Solution: Degap sequences first or ensure sequences are unaligned
|
|
seq1_degapped = seq1.degap()
|
|
seq2_degapped = seq2.degap()
|
|
alignment = local_pairwise_align_ssw(seq1_degapped, seq2_degapped)
|
|
```
|
|
|
|
### Performance Tips
|
|
|
|
1. **Use appropriate data structures**: BIOM HDF5 for large tables, generators for large sequence files
|
|
2. **Parallel processing**: Use `partial_beta_diversity()` for subset calculations that can be parallelized
|
|
3. **Subsample large datasets**: For exploratory analysis, work with subsampled data first
|
|
4. **Cache results**: Save distance matrices and ordination results to avoid recomputation
|
|
|
|
### Integration Examples
|
|
|
|
#### With pandas
|
|
```python
|
|
import pandas as pd
|
|
from skbio import DistanceMatrix
|
|
|
|
# Distance matrix to DataFrame
|
|
dm = DistanceMatrix(...)
|
|
df = dm.to_data_frame()
|
|
|
|
# Alpha diversity to DataFrame
|
|
alpha = alpha_diversity('shannon', counts, ids=sample_ids)
|
|
alpha_df = pd.DataFrame({'shannon': alpha})
|
|
```
|
|
|
|
#### With matplotlib/seaborn
|
|
```python
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
|
|
# PCoA plot
|
|
fig, ax = plt.subplots()
|
|
scatter = ax.scatter(pc1, pc2, c=grouping, cmap='viridis')
|
|
ax.set_xlabel(f'PC1 ({prop_explained[0]*100:.1f}%)')
|
|
ax.set_ylabel(f'PC2 ({prop_explained[1]*100:.1f}%)')
|
|
plt.colorbar(scatter)
|
|
|
|
# Heatmap of distance matrix
|
|
sns.heatmap(dm.to_data_frame(), cmap='viridis')
|
|
```
|
|
|
|
#### With QIIME 2
|
|
```python
|
|
# scikit-bio objects are compatible with QIIME 2
|
|
# Export from QIIME 2
|
|
# qiime tools export --input-path table.qza --output-path exported/
|
|
|
|
# Read in scikit-bio
|
|
table = Table.read('exported/feature-table.biom')
|
|
|
|
# Process with scikit-bio
|
|
# ...
|
|
|
|
# Import back to QIIME 2 if needed
|
|
table.write('processed-table.biom')
|
|
# qiime tools import --input-path processed-table.biom --output-path processed.qza
|
|
```
|