Files
gh-k-dense-ai-claude-scient…/skills/pyopenms/references/metabolomics.md
2025-11-30 08:30:10 +08:00

483 lines
13 KiB
Markdown

# Metabolomics Workflows
## Overview
PyOpenMS provides specialized tools for untargeted metabolomics analysis including feature detection optimized for small molecules, adduct grouping, compound identification, and integration with metabolomics databases.
## Untargeted Metabolomics Pipeline
### Complete Workflow
```python
import pyopenms as ms
def metabolomics_pipeline(input_files, output_dir):
"""
Complete untargeted metabolomics workflow.
Args:
input_files: List of mzML file paths (one per sample)
output_dir: Directory for output files
"""
# Step 1: Peak picking and feature detection
feature_maps = []
for mzml_file in input_files:
print(f"Processing {mzml_file}...")
# Load data
exp = ms.MSExperiment()
ms.MzMLFile().load(mzml_file, exp)
# Peak picking if needed
if not exp.getSpectrum(0).isSorted():
picker = ms.PeakPickerHiRes()
exp_picked = ms.MSExperiment()
picker.pickExperiment(exp, exp_picked)
exp = exp_picked
# Feature detection
ff = ms.FeatureFinder()
params = ff.getParameters("centroided")
# Metabolomics-specific parameters
params.setValue("mass_trace:mz_tolerance", 5.0) # ppm, tighter for metabolites
params.setValue("mass_trace:min_spectra", 5)
params.setValue("isotopic_pattern:charge_low", 1)
params.setValue("isotopic_pattern:charge_high", 2) # Mostly singly charged
features = ms.FeatureMap()
ff.run("centroided", exp, features, params, ms.FeatureMap())
features.setPrimaryMSRunPath([mzml_file.encode()])
feature_maps.append(features)
print(f" Detected {features.size()} features")
# Step 2: Adduct detection and grouping
print("Detecting adducts...")
adduct_grouped_maps = []
adduct_detector = ms.MetaboliteAdductDecharger()
params = adduct_detector.getParameters()
params.setValue("potential_adducts", "[M+H]+,[M+Na]+,[M+K]+,[M+NH4]+,[M-H]-,[M+Cl]-")
params.setValue("charge_min", 1)
params.setValue("charge_max", 1)
adduct_detector.setParameters(params)
for fm in feature_maps:
fm_out = ms.FeatureMap()
adduct_detector.compute(fm, fm_out, ms.ConsensusMap())
adduct_grouped_maps.append(fm_out)
# Step 3: RT alignment
print("Aligning retention times...")
aligner = ms.MapAlignmentAlgorithmPoseClustering()
params = aligner.getParameters()
params.setValue("max_num_peaks_considered", 1000)
params.setValue("pairfinder:distance_MZ:max_difference", 10.0)
params.setValue("pairfinder:distance_MZ:unit", "ppm")
aligner.setParameters(params)
aligned_maps = []
transformations = []
aligner.align(adduct_grouped_maps, aligned_maps, transformations)
# Step 4: Feature linking
print("Linking features...")
grouper = ms.FeatureGroupingAlgorithmQT()
params = grouper.getParameters()
params.setValue("distance_RT:max_difference", 60.0) # seconds
params.setValue("distance_MZ:max_difference", 5.0) # ppm
params.setValue("distance_MZ:unit", "ppm")
grouper.setParameters(params)
consensus_map = ms.ConsensusMap()
grouper.group(aligned_maps, consensus_map)
print(f"Created {consensus_map.size()} consensus features")
# Step 5: Gap filling (fill missing values)
print("Filling gaps...")
# Gap filling not directly available in Python API
# Would use TOPP tool FeatureFinderMetaboIdent
# Step 6: Export results
consensus_file = f"{output_dir}/consensus.consensusXML"
ms.ConsensusXMLFile().store(consensus_file, consensus_map)
# Export to CSV for downstream analysis
df = consensus_map.get_df()
csv_file = f"{output_dir}/metabolite_table.csv"
df.to_csv(csv_file, index=False)
print(f"Results saved to {output_dir}")
return consensus_map
# Run pipeline
input_files = ["sample1.mzML", "sample2.mzML", "sample3.mzML"]
consensus = metabolomics_pipeline(input_files, "output")
```
## Adduct Detection
### Configure Adduct Types
```python
# Create adduct detector
adduct_detector = ms.MetaboliteAdductDecharger()
# Configure common adducts
params = adduct_detector.getParameters()
# Positive mode adducts
positive_adducts = [
"[M+H]+",
"[M+Na]+",
"[M+K]+",
"[M+NH4]+",
"[2M+H]+",
"[M+H-H2O]+"
]
# Negative mode adducts
negative_adducts = [
"[M-H]-",
"[M+Cl]-",
"[M+FA-H]-", # Formate
"[2M-H]-"
]
# Set for positive mode
params.setValue("potential_adducts", ",".join(positive_adducts))
params.setValue("charge_min", 1)
params.setValue("charge_max", 1)
params.setValue("max_neutrals", 1)
adduct_detector.setParameters(params)
# Apply adduct detection
feature_map_out = ms.FeatureMap()
adduct_detector.compute(feature_map, feature_map_out, ms.ConsensusMap())
```
### Access Adduct Information
```python
# Check adduct annotations
for feature in feature_map_out:
# Get adduct type if annotated
if feature.metaValueExists("adduct"):
adduct = feature.getMetaValue("adduct")
neutral_mass = feature.getMetaValue("neutral_mass")
print(f"m/z: {feature.getMZ():.4f}")
print(f" Adduct: {adduct}")
print(f" Neutral mass: {neutral_mass:.4f}")
```
## Compound Identification
### Mass-Based Annotation
```python
# Annotate features with compound database
from pyopenms import MassDecomposition
# Load compound database (example structure)
# In practice, use external database like HMDB, METLIN
compound_db = [
{"name": "Glucose", "formula": "C6H12O6", "mass": 180.0634},
{"name": "Citric acid", "formula": "C6H8O7", "mass": 192.0270},
# ... more compounds
]
# Annotate features
mass_tolerance = 5.0 # ppm
for feature in feature_map:
observed_mz = feature.getMZ()
# Calculate neutral mass (assuming [M+H]+)
neutral_mass = observed_mz - 1.007276 # Proton mass
# Search database
for compound in compound_db:
mass_error_ppm = abs(neutral_mass - compound["mass"]) / compound["mass"] * 1e6
if mass_error_ppm <= mass_tolerance:
print(f"Potential match: {compound['name']}")
print(f" Observed m/z: {observed_mz:.4f}")
print(f" Expected mass: {compound['mass']:.4f}")
print(f" Error: {mass_error_ppm:.2f} ppm")
```
### MS/MS-Based Identification
```python
# Load MS2 data
exp = ms.MSExperiment()
ms.MzMLFile().load("data_with_ms2.mzML", exp)
# Extract MS2 spectra
ms2_spectra = []
for spec in exp:
if spec.getMSLevel() == 2:
ms2_spectra.append(spec)
print(f"Found {len(ms2_spectra)} MS2 spectra")
# Match to spectral library
# (Requires external tool or custom implementation)
```
## Data Normalization
### Total Ion Current (TIC) Normalization
```python
import numpy as np
# Load consensus map
consensus_map = ms.ConsensusMap()
ms.ConsensusXMLFile().load("consensus.consensusXML", consensus_map)
# Calculate TIC per sample
n_samples = len(consensus_map.getColumnHeaders())
tic_per_sample = np.zeros(n_samples)
for cons_feature in consensus_map:
for handle in cons_feature.getFeatureList():
map_idx = handle.getMapIndex()
tic_per_sample[map_idx] += handle.getIntensity()
print("TIC per sample:", tic_per_sample)
# Normalize to median TIC
median_tic = np.median(tic_per_sample)
normalization_factors = median_tic / tic_per_sample
print("Normalization factors:", normalization_factors)
# Apply normalization
consensus_map_normalized = ms.ConsensusMap(consensus_map)
for cons_feature in consensus_map_normalized:
feature_list = cons_feature.getFeatureList()
for handle in feature_list:
map_idx = handle.getMapIndex()
normalized_intensity = handle.getIntensity() * normalization_factors[map_idx]
handle.setIntensity(normalized_intensity)
```
## Quality Control
### Coefficient of Variation (CV) Filtering
```python
import pandas as pd
import numpy as np
# Export to pandas
df = consensus_map.get_df()
# Assume QC samples are columns with 'QC' in name
qc_cols = [col for col in df.columns if 'QC' in col]
if qc_cols:
# Calculate CV for each feature in QC samples
qc_data = df[qc_cols]
cv = (qc_data.std(axis=1) / qc_data.mean(axis=1)) * 100
# Filter features with CV < 30% in QC samples
good_features = df[cv < 30]
print(f"Features before CV filter: {len(df)}")
print(f"Features after CV filter: {len(good_features)}")
```
### Blank Filtering
```python
# Remove features present in blank samples
blank_cols = [col for col in df.columns if 'Blank' in col]
sample_cols = [col for col in df.columns if 'Sample' in col]
if blank_cols and sample_cols:
# Calculate mean intensity in blanks and samples
blank_mean = df[blank_cols].mean(axis=1)
sample_mean = df[sample_cols].mean(axis=1)
# Keep features with 3x higher intensity in samples than blanks
ratio = sample_mean / (blank_mean + 1) # Add 1 to avoid division by zero
filtered_df = df[ratio > 3]
print(f"Features before blank filtering: {len(df)}")
print(f"Features after blank filtering: {len(filtered_df)}")
```
## Missing Value Imputation
```python
import pandas as pd
import numpy as np
# Load data
df = consensus_map.get_df()
# Replace zeros with NaN
df = df.replace(0, np.nan)
# Count missing values
missing_per_feature = df.isnull().sum(axis=1)
print(f"Features with >50% missing: {sum(missing_per_feature > len(df.columns)/2)}")
# Simple imputation: replace with minimum value
for col in df.columns:
if df[col].dtype in [np.float64, np.int64]:
min_val = df[col].min() / 2 # Half minimum
df[col].fillna(min_val, inplace=True)
```
## Metabolite Table Export
### Create Analysis-Ready Table
```python
import pandas as pd
def create_metabolite_table(consensus_map, output_file):
"""
Create metabolite quantification table for statistical analysis.
"""
# Get column headers (file descriptions)
headers = consensus_map.getColumnHeaders()
# Initialize data structure
data = {
'mz': [],
'rt': [],
'feature_id': []
}
# Add sample columns
for map_idx, header in headers.items():
sample_name = header.label or f"Sample_{map_idx}"
data[sample_name] = []
# Extract feature data
for idx, cons_feature in enumerate(consensus_map):
data['mz'].append(cons_feature.getMZ())
data['rt'].append(cons_feature.getRT())
data['feature_id'].append(f"F{idx:06d}")
# Initialize intensities
intensities = {map_idx: 0.0 for map_idx in headers.keys()}
# Fill in measured intensities
for handle in cons_feature.getFeatureList():
map_idx = handle.getMapIndex()
intensities[map_idx] = handle.getIntensity()
# Add to data structure
for map_idx, header in headers.items():
sample_name = header.label or f"Sample_{map_idx}"
data[sample_name].append(intensities[map_idx])
# Create DataFrame
df = pd.DataFrame(data)
# Sort by RT
df = df.sort_values('rt')
# Save to CSV
df.to_csv(output_file, index=False)
print(f"Metabolite table with {len(df)} features saved to {output_file}")
return df
# Create table
df = create_metabolite_table(consensus_map, "metabolite_table.csv")
```
## Integration with External Tools
### Export for MetaboAnalyst
```python
def export_for_metaboanalyst(df, output_file):
"""
Format data for MetaboAnalyst input.
Requires sample names as columns, features as rows.
"""
# Transpose DataFrame
# Remove metadata columns
sample_cols = [col for col in df.columns if col not in ['mz', 'rt', 'feature_id']]
# Extract sample data
sample_data = df[sample_cols]
# Transpose (samples as rows, features as columns)
df_transposed = sample_data.T
# Add feature identifiers as column names
df_transposed.columns = df['feature_id']
# Save
df_transposed.to_csv(output_file)
print(f"MetaboAnalyst format saved to {output_file}")
# Export
export_for_metaboanalyst(df, "for_metaboanalyst.csv")
```
## Best Practices
### Sample Size and Replicates
- Include QC samples (pooled sample) every 5-10 injections
- Run blank samples to identify contamination
- Use at least 3 biological replicates per group
- Randomize sample injection order
### Parameter Optimization
Test parameters on pooled QC sample:
```python
# Test different mass trace parameters
mz_tolerances = [3.0, 5.0, 10.0]
min_spectra_values = [3, 5, 7]
for tol in mz_tolerances:
for min_spec in min_spectra_values:
ff = ms.FeatureFinder()
params = ff.getParameters("centroided")
params.setValue("mass_trace:mz_tolerance", tol)
params.setValue("mass_trace:min_spectra", min_spec)
features = ms.FeatureMap()
ff.run("centroided", exp, features, params, ms.FeatureMap())
print(f"tol={tol}, min_spec={min_spec}: {features.size()} features")
```
### Retention Time Windows
Adjust based on chromatographic method:
```python
# For 10-minute LC gradient
params.setValue("distance_RT:max_difference", 30.0) # 30 seconds
# For 60-minute LC gradient
params.setValue("distance_RT:max_difference", 90.0) # 90 seconds
```