Files
gh-k-dense-ai-claude-scient…/skills/pymc/SKILL.md
2025-11-30 08:30:10 +08:00

567 lines
15 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
name: pymc-bayesian-modeling
description: "Bayesian modeling with PyMC. Build hierarchical models, MCMC (NUTS), variational inference, LOO/WAIC comparison, posterior checks, for probabilistic programming and inference."
---
# PyMC Bayesian Modeling
## Overview
PyMC is a Python library for Bayesian modeling and probabilistic programming. Build, fit, validate, and compare Bayesian models using PyMC's modern API (version 5.x+), including hierarchical models, MCMC sampling (NUTS), variational inference, and model comparison (LOO, WAIC).
## When to Use This Skill
This skill should be used when:
- Building Bayesian models (linear/logistic regression, hierarchical models, time series, etc.)
- Performing MCMC sampling or variational inference
- Conducting prior/posterior predictive checks
- Diagnosing sampling issues (divergences, convergence, ESS)
- Comparing multiple models using information criteria (LOO, WAIC)
- Implementing uncertainty quantification through Bayesian methods
- Working with hierarchical/multilevel data structures
- Handling missing data or measurement error in a principled way
## Standard Bayesian Workflow
Follow this workflow for building and validating Bayesian models:
### 1. Data Preparation
```python
import pymc as pm
import arviz as az
import numpy as np
# Load and prepare data
X = ... # Predictors
y = ... # Outcomes
# Standardize predictors for better sampling
X_mean = X.mean(axis=0)
X_std = X.std(axis=0)
X_scaled = (X - X_mean) / X_std
```
**Key practices:**
- Standardize continuous predictors (improves sampling efficiency)
- Center outcomes when possible
- Handle missing data explicitly (treat as parameters)
- Use named dimensions with `coords` for clarity
### 2. Model Building
```python
coords = {
'predictors': ['var1', 'var2', 'var3'],
'obs_id': np.arange(len(y))
}
with pm.Model(coords=coords) as model:
# Priors
alpha = pm.Normal('alpha', mu=0, sigma=1)
beta = pm.Normal('beta', mu=0, sigma=1, dims='predictors')
sigma = pm.HalfNormal('sigma', sigma=1)
# Linear predictor
mu = alpha + pm.math.dot(X_scaled, beta)
# Likelihood
y_obs = pm.Normal('y_obs', mu=mu, sigma=sigma, observed=y, dims='obs_id')
```
**Key practices:**
- Use weakly informative priors (not flat priors)
- Use `HalfNormal` or `Exponential` for scale parameters
- Use named dimensions (`dims`) instead of `shape` when possible
- Use `pm.Data()` for values that will be updated for predictions
### 3. Prior Predictive Check
**Always validate priors before fitting:**
```python
with model:
prior_pred = pm.sample_prior_predictive(samples=1000, random_seed=42)
# Visualize
az.plot_ppc(prior_pred, group='prior')
```
**Check:**
- Do prior predictions span reasonable values?
- Are extreme values plausible given domain knowledge?
- If priors generate implausible data, adjust and re-check
### 4. Fit Model
```python
with model:
# Optional: Quick exploration with ADVI
# approx = pm.fit(n=20000)
# Full MCMC inference
idata = pm.sample(
draws=2000,
tune=1000,
chains=4,
target_accept=0.9,
random_seed=42,
idata_kwargs={'log_likelihood': True} # For model comparison
)
```
**Key parameters:**
- `draws=2000`: Number of samples per chain
- `tune=1000`: Warmup samples (discarded)
- `chains=4`: Run 4 chains for convergence checking
- `target_accept=0.9`: Higher for difficult posteriors (0.95-0.99)
- Include `log_likelihood=True` for model comparison
### 5. Check Diagnostics
**Use the diagnostic script:**
```python
from scripts.model_diagnostics import check_diagnostics
results = check_diagnostics(idata, var_names=['alpha', 'beta', 'sigma'])
```
**Check:**
- **R-hat < 1.01**: Chains have converged
- **ESS > 400**: Sufficient effective samples
- **No divergences**: NUTS sampled successfully
- **Trace plots**: Chains should mix well (fuzzy caterpillar)
**If issues arise:**
- Divergences → Increase `target_accept=0.95`, use non-centered parameterization
- Low ESS → Sample more draws, reparameterize to reduce correlation
- High R-hat → Run longer, check for multimodality
### 6. Posterior Predictive Check
**Validate model fit:**
```python
with model:
pm.sample_posterior_predictive(idata, extend_inferencedata=True, random_seed=42)
# Visualize
az.plot_ppc(idata)
```
**Check:**
- Do posterior predictions capture observed data patterns?
- Are systematic deviations evident (model misspecification)?
- Consider alternative models if fit is poor
### 7. Analyze Results
```python
# Summary statistics
print(az.summary(idata, var_names=['alpha', 'beta', 'sigma']))
# Posterior distributions
az.plot_posterior(idata, var_names=['alpha', 'beta', 'sigma'])
# Coefficient estimates
az.plot_forest(idata, var_names=['beta'], combined=True)
```
### 8. Make Predictions
```python
X_new = ... # New predictor values
X_new_scaled = (X_new - X_mean) / X_std
with model:
pm.set_data({'X_scaled': X_new_scaled})
post_pred = pm.sample_posterior_predictive(
idata.posterior,
var_names=['y_obs'],
random_seed=42
)
# Extract prediction intervals
y_pred_mean = post_pred.posterior_predictive['y_obs'].mean(dim=['chain', 'draw'])
y_pred_hdi = az.hdi(post_pred.posterior_predictive, var_names=['y_obs'])
```
## Common Model Patterns
### Linear Regression
For continuous outcomes with linear relationships:
```python
with pm.Model() as linear_model:
alpha = pm.Normal('alpha', mu=0, sigma=10)
beta = pm.Normal('beta', mu=0, sigma=10, shape=n_predictors)
sigma = pm.HalfNormal('sigma', sigma=1)
mu = alpha + pm.math.dot(X, beta)
y = pm.Normal('y', mu=mu, sigma=sigma, observed=y_obs)
```
**Use template:** `assets/linear_regression_template.py`
### Logistic Regression
For binary outcomes:
```python
with pm.Model() as logistic_model:
alpha = pm.Normal('alpha', mu=0, sigma=10)
beta = pm.Normal('beta', mu=0, sigma=10, shape=n_predictors)
logit_p = alpha + pm.math.dot(X, beta)
y = pm.Bernoulli('y', logit_p=logit_p, observed=y_obs)
```
### Hierarchical Models
For grouped data (use non-centered parameterization):
```python
with pm.Model(coords={'groups': group_names}) as hierarchical_model:
# Hyperpriors
mu_alpha = pm.Normal('mu_alpha', mu=0, sigma=10)
sigma_alpha = pm.HalfNormal('sigma_alpha', sigma=1)
# Group-level (non-centered)
alpha_offset = pm.Normal('alpha_offset', mu=0, sigma=1, dims='groups')
alpha = pm.Deterministic('alpha', mu_alpha + sigma_alpha * alpha_offset, dims='groups')
# Observation-level
mu = alpha[group_idx]
sigma = pm.HalfNormal('sigma', sigma=1)
y = pm.Normal('y', mu=mu, sigma=sigma, observed=y_obs)
```
**Use template:** `assets/hierarchical_model_template.py`
**Critical:** Always use non-centered parameterization for hierarchical models to avoid divergences.
### Poisson Regression
For count data:
```python
with pm.Model() as poisson_model:
alpha = pm.Normal('alpha', mu=0, sigma=10)
beta = pm.Normal('beta', mu=0, sigma=10, shape=n_predictors)
log_lambda = alpha + pm.math.dot(X, beta)
y = pm.Poisson('y', mu=pm.math.exp(log_lambda), observed=y_obs)
```
For overdispersed counts, use `NegativeBinomial` instead.
### Time Series
For autoregressive processes:
```python
with pm.Model() as ar_model:
sigma = pm.HalfNormal('sigma', sigma=1)
rho = pm.Normal('rho', mu=0, sigma=0.5, shape=ar_order)
init_dist = pm.Normal.dist(mu=0, sigma=sigma)
y = pm.AR('y', rho=rho, sigma=sigma, init_dist=init_dist, observed=y_obs)
```
## Model Comparison
### Comparing Models
Use LOO or WAIC for model comparison:
```python
from scripts.model_comparison import compare_models, check_loo_reliability
# Fit models with log_likelihood
models = {
'Model1': idata1,
'Model2': idata2,
'Model3': idata3
}
# Compare using LOO
comparison = compare_models(models, ic='loo')
# Check reliability
check_loo_reliability(models)
```
**Interpretation:**
- **Δloo < 2**: Models are similar, choose simpler model
- **2 < Δloo < 4**: Weak evidence for better model
- **4 < Δloo < 10**: Moderate evidence
- **Δloo > 10**: Strong evidence for better model
**Check Pareto-k values:**
- k < 0.7: LOO reliable
- k > 0.7: Consider WAIC or k-fold CV
### Model Averaging
When models are similar, average predictions:
```python
from scripts.model_comparison import model_averaging
averaged_pred, weights = model_averaging(models, var_name='y_obs')
```
## Distribution Selection Guide
### For Priors
**Scale parameters** (σ, τ):
- `pm.HalfNormal('sigma', sigma=1)` - Default choice
- `pm.Exponential('sigma', lam=1)` - Alternative
- `pm.Gamma('sigma', alpha=2, beta=1)` - More informative
**Unbounded parameters**:
- `pm.Normal('theta', mu=0, sigma=1)` - For standardized data
- `pm.StudentT('theta', nu=3, mu=0, sigma=1)` - Robust to outliers
**Positive parameters**:
- `pm.LogNormal('theta', mu=0, sigma=1)`
- `pm.Gamma('theta', alpha=2, beta=1)`
**Probabilities**:
- `pm.Beta('p', alpha=2, beta=2)` - Weakly informative
- `pm.Uniform('p', lower=0, upper=1)` - Non-informative (use sparingly)
**Correlation matrices**:
- `pm.LKJCorr('corr', n=n_vars, eta=2)` - eta=1 uniform, eta>1 prefers identity
### For Likelihoods
**Continuous outcomes**:
- `pm.Normal('y', mu=mu, sigma=sigma)` - Default for continuous data
- `pm.StudentT('y', nu=nu, mu=mu, sigma=sigma)` - Robust to outliers
**Count data**:
- `pm.Poisson('y', mu=lambda)` - Equidispersed counts
- `pm.NegativeBinomial('y', mu=mu, alpha=alpha)` - Overdispersed counts
- `pm.ZeroInflatedPoisson('y', psi=psi, mu=mu)` - Excess zeros
**Binary outcomes**:
- `pm.Bernoulli('y', p=p)` or `pm.Bernoulli('y', logit_p=logit_p)`
**Categorical outcomes**:
- `pm.Categorical('y', p=probs)`
**See:** `references/distributions.md` for comprehensive distribution reference
## Sampling and Inference
### MCMC with NUTS
Default and recommended for most models:
```python
idata = pm.sample(
draws=2000,
tune=1000,
chains=4,
target_accept=0.9,
random_seed=42
)
```
**Adjust when needed:**
- Divergences → `target_accept=0.95` or higher
- Slow sampling → Use ADVI for initialization
- Discrete parameters → Use `pm.Metropolis()` for discrete vars
### Variational Inference
Fast approximation for exploration or initialization:
```python
with model:
approx = pm.fit(n=20000, method='advi')
# Use for initialization
start = approx.sample(return_inferencedata=False)[0]
idata = pm.sample(start=start)
```
**Trade-offs:**
- Much faster than MCMC
- Approximate (may underestimate uncertainty)
- Good for large models or quick exploration
**See:** `references/sampling_inference.md` for detailed sampling guide
## Diagnostic Scripts
### Comprehensive Diagnostics
```python
from scripts.model_diagnostics import create_diagnostic_report
create_diagnostic_report(
idata,
var_names=['alpha', 'beta', 'sigma'],
output_dir='diagnostics/'
)
```
Creates:
- Trace plots
- Rank plots (mixing check)
- Autocorrelation plots
- Energy plots
- ESS evolution
- Summary statistics CSV
### Quick Diagnostic Check
```python
from scripts.model_diagnostics import check_diagnostics
results = check_diagnostics(idata)
```
Checks R-hat, ESS, divergences, and tree depth.
## Common Issues and Solutions
### Divergences
**Symptom:** `idata.sample_stats.diverging.sum() > 0`
**Solutions:**
1. Increase `target_accept=0.95` or `0.99`
2. Use non-centered parameterization (hierarchical models)
3. Add stronger priors to constrain parameters
4. Check for model misspecification
### Low Effective Sample Size
**Symptom:** `ESS < 400`
**Solutions:**
1. Sample more draws: `draws=5000`
2. Reparameterize to reduce posterior correlation
3. Use QR decomposition for regression with correlated predictors
### High R-hat
**Symptom:** `R-hat > 1.01`
**Solutions:**
1. Run longer chains: `tune=2000, draws=5000`
2. Check for multimodality
3. Improve initialization with ADVI
### Slow Sampling
**Solutions:**
1. Use ADVI initialization
2. Reduce model complexity
3. Increase parallelization: `cores=8, chains=8`
4. Use variational inference if appropriate
## Best Practices
### Model Building
1. **Always standardize predictors** for better sampling
2. **Use weakly informative priors** (not flat)
3. **Use named dimensions** (`dims`) for clarity
4. **Non-centered parameterization** for hierarchical models
5. **Check prior predictive** before fitting
### Sampling
1. **Run multiple chains** (at least 4) for convergence
2. **Use `target_accept=0.9`** as baseline (higher if needed)
3. **Include `log_likelihood=True`** for model comparison
4. **Set random seed** for reproducibility
### Validation
1. **Check diagnostics** before interpretation (R-hat, ESS, divergences)
2. **Posterior predictive check** for model validation
3. **Compare multiple models** when appropriate
4. **Report uncertainty** (HDI intervals, not just point estimates)
### Workflow
1. Start simple, add complexity gradually
2. Prior predictive check → Fit → Diagnostics → Posterior predictive check
3. Iterate on model specification based on checks
4. Document assumptions and prior choices
## Resources
This skill includes:
### References (`references/`)
- **`distributions.md`**: Comprehensive catalog of PyMC distributions organized by category (continuous, discrete, multivariate, mixture, time series). Use when selecting priors or likelihoods.
- **`sampling_inference.md`**: Detailed guide to sampling algorithms (NUTS, Metropolis, SMC), variational inference (ADVI, SVGD), and handling sampling issues. Use when encountering convergence problems or choosing inference methods.
- **`workflows.md`**: Complete workflow examples and code patterns for common model types, data preparation, prior selection, and model validation. Use as a cookbook for standard Bayesian analyses.
### Scripts (`scripts/`)
- **`model_diagnostics.py`**: Automated diagnostic checking and report generation. Functions: `check_diagnostics()` for quick checks, `create_diagnostic_report()` for comprehensive analysis with plots.
- **`model_comparison.py`**: Model comparison utilities using LOO/WAIC. Functions: `compare_models()`, `check_loo_reliability()`, `model_averaging()`.
### Templates (`assets/`)
- **`linear_regression_template.py`**: Complete template for Bayesian linear regression with full workflow (data prep, prior checks, fitting, diagnostics, predictions).
- **`hierarchical_model_template.py`**: Complete template for hierarchical/multilevel models with non-centered parameterization and group-level analysis.
## Quick Reference
### Model Building
```python
with pm.Model(coords={'var': names}) as model:
# Priors
param = pm.Normal('param', mu=0, sigma=1, dims='var')
# Likelihood
y = pm.Normal('y', mu=..., sigma=..., observed=data)
```
### Sampling
```python
idata = pm.sample(draws=2000, tune=1000, chains=4, target_accept=0.9)
```
### Diagnostics
```python
from scripts.model_diagnostics import check_diagnostics
check_diagnostics(idata)
```
### Model Comparison
```python
from scripts.model_comparison import compare_models
compare_models({'m1': idata1, 'm2': idata2}, ic='loo')
```
### Predictions
```python
with model:
pm.set_data({'X': X_new})
pred = pm.sample_posterior_predictive(idata.posterior)
```
## Additional Notes
- PyMC integrates with ArviZ for visualization and diagnostics
- Use `pm.model_to_graphviz(model)` to visualize model structure
- Save results with `idata.to_netcdf('results.nc')`
- Load with `az.from_netcdf('results.nc')`
- For very large models, consider minibatch ADVI or data subsampling