592 lines
16 KiB
Markdown
592 lines
16 KiB
Markdown
# Pymatgen Transformations and Common Workflows
|
|
|
|
This reference documents pymatgen's transformation framework and provides recipes for common materials science workflows.
|
|
|
|
## Transformation Framework
|
|
|
|
Transformations provide a systematic way to modify structures while tracking the history of modifications.
|
|
|
|
### Standard Transformations
|
|
|
|
Located in `pymatgen.transformations.standard_transformations`.
|
|
|
|
#### SupercellTransformation
|
|
|
|
Create supercells with arbitrary scaling matrices.
|
|
|
|
```python
|
|
from pymatgen.transformations.standard_transformations import SupercellTransformation
|
|
|
|
# Simple 2x2x2 supercell
|
|
trans = SupercellTransformation([[2,0,0], [0,2,0], [0,0,2]])
|
|
new_struct = trans.apply_transformation(struct)
|
|
|
|
# Non-orthogonal supercell
|
|
trans = SupercellTransformation([[2,1,0], [0,2,0], [0,0,2]])
|
|
new_struct = trans.apply_transformation(struct)
|
|
```
|
|
|
|
#### SubstitutionTransformation
|
|
|
|
Replace species in a structure.
|
|
|
|
```python
|
|
from pymatgen.transformations.standard_transformations import SubstitutionTransformation
|
|
|
|
# Replace all Fe with Mn
|
|
trans = SubstitutionTransformation({"Fe": "Mn"})
|
|
new_struct = trans.apply_transformation(struct)
|
|
|
|
# Partial substitution (50% Fe -> Mn)
|
|
trans = SubstitutionTransformation({"Fe": {"Mn": 0.5, "Fe": 0.5}})
|
|
new_struct = trans.apply_transformation(struct)
|
|
```
|
|
|
|
#### RemoveSpeciesTransformation
|
|
|
|
Remove specific species from structure.
|
|
|
|
```python
|
|
from pymatgen.transformations.standard_transformations import RemoveSpeciesTransformation
|
|
|
|
trans = RemoveSpeciesTransformation(["H"]) # Remove all hydrogen
|
|
new_struct = trans.apply_transformation(struct)
|
|
```
|
|
|
|
#### OrderDisorderedStructureTransformation
|
|
|
|
Order disordered structures with partial occupancies.
|
|
|
|
```python
|
|
from pymatgen.transformations.standard_transformations import OrderDisorderedStructureTransformation
|
|
|
|
trans = OrderDisorderedStructureTransformation()
|
|
new_struct = trans.apply_transformation(disordered_struct)
|
|
```
|
|
|
|
#### PrimitiveCellTransformation
|
|
|
|
Convert to primitive cell.
|
|
|
|
```python
|
|
from pymatgen.transformations.standard_transformations import PrimitiveCellTransformation
|
|
|
|
trans = PrimitiveCellTransformation()
|
|
primitive_struct = trans.apply_transformation(struct)
|
|
```
|
|
|
|
#### ConventionalCellTransformation
|
|
|
|
Convert to conventional cell.
|
|
|
|
```python
|
|
from pymatgen.transformations.standard_transformations import ConventionalCellTransformation
|
|
|
|
trans = ConventionalCellTransformation()
|
|
conventional_struct = trans.apply_transformation(struct)
|
|
```
|
|
|
|
#### RotationTransformation
|
|
|
|
Rotate structure.
|
|
|
|
```python
|
|
from pymatgen.transformations.standard_transformations import RotationTransformation
|
|
|
|
# Rotate by axis and angle
|
|
trans = RotationTransformation([0, 0, 1], 45) # 45° around z-axis
|
|
new_struct = trans.apply_transformation(struct)
|
|
```
|
|
|
|
#### ScaleToRelaxedTransformation
|
|
|
|
Scale lattice to match a relaxed structure.
|
|
|
|
```python
|
|
from pymatgen.transformations.standard_transformations import ScaleToRelaxedTransformation
|
|
|
|
trans = ScaleToRelaxedTransformation(relaxed_struct)
|
|
scaled_struct = trans.apply_transformation(unrelaxed_struct)
|
|
```
|
|
|
|
### Advanced Transformations
|
|
|
|
Located in `pymatgen.transformations.advanced_transformations`.
|
|
|
|
#### EnumerateStructureTransformation
|
|
|
|
Enumerate all symmetrically distinct ordered structures from a disordered structure.
|
|
|
|
```python
|
|
from pymatgen.transformations.advanced_transformations import EnumerateStructureTransformation
|
|
|
|
# Enumerate structures up to max 8 atoms per unit cell
|
|
trans = EnumerateStructureTransformation(max_cell_size=8)
|
|
structures = trans.apply_transformation(struct, return_ranked_list=True)
|
|
|
|
# Returns list of ranked structures
|
|
for s in structures[:5]: # Top 5 structures
|
|
print(f"Energy: {s['energy']}, Structure: {s['structure']}")
|
|
```
|
|
|
|
#### MagOrderingTransformation
|
|
|
|
Enumerate magnetic orderings.
|
|
|
|
```python
|
|
from pymatgen.transformations.advanced_transformations import MagOrderingTransformation
|
|
|
|
# Specify magnetic moments for each species
|
|
trans = MagOrderingTransformation({"Fe": 5.0, "Ni": 2.0})
|
|
mag_structures = trans.apply_transformation(struct, return_ranked_list=True)
|
|
```
|
|
|
|
#### DopingTransformation
|
|
|
|
Systematically dope a structure.
|
|
|
|
```python
|
|
from pymatgen.transformations.advanced_transformations import DopingTransformation
|
|
|
|
# Replace 12.5% of Fe sites with Mn
|
|
trans = DopingTransformation("Mn", min_length=10)
|
|
doped_structs = trans.apply_transformation(struct, return_ranked_list=True)
|
|
```
|
|
|
|
#### ChargeBalanceTransformation
|
|
|
|
Balance charge in a structure by oxidation state manipulation.
|
|
|
|
```python
|
|
from pymatgen.transformations.advanced_transformations import ChargeBalanceTransformation
|
|
|
|
trans = ChargeBalanceTransformation("Li")
|
|
charged_struct = trans.apply_transformation(struct)
|
|
```
|
|
|
|
#### SlabTransformation
|
|
|
|
Generate surface slabs.
|
|
|
|
```python
|
|
from pymatgen.transformations.advanced_transformations import SlabTransformation
|
|
|
|
trans = SlabTransformation(
|
|
miller_index=[1, 0, 0],
|
|
min_slab_size=10,
|
|
min_vacuum_size=10,
|
|
shift=0,
|
|
lll_reduce=True
|
|
)
|
|
slab = trans.apply_transformation(struct)
|
|
```
|
|
|
|
### Chaining Transformations
|
|
|
|
```python
|
|
from pymatgen.alchemy.materials import TransformedStructure
|
|
|
|
# Create transformed structure that tracks history
|
|
ts = TransformedStructure(struct, [])
|
|
|
|
# Apply multiple transformations
|
|
ts.append_transformation(SupercellTransformation([[2,0,0],[0,2,0],[0,0,2]]))
|
|
ts.append_transformation(SubstitutionTransformation({"Fe": "Mn"}))
|
|
ts.append_transformation(PrimitiveCellTransformation())
|
|
|
|
# Get final structure
|
|
final_struct = ts.final_structure
|
|
|
|
# View transformation history
|
|
print(ts.history)
|
|
```
|
|
|
|
## Common Workflows
|
|
|
|
### Workflow 1: High-Throughput Structure Generation
|
|
|
|
Generate multiple structures for screening studies.
|
|
|
|
```python
|
|
from pymatgen.core import Structure
|
|
from pymatgen.transformations.standard_transformations import (
|
|
SubstitutionTransformation,
|
|
SupercellTransformation
|
|
)
|
|
from pymatgen.io.vasp.sets import MPRelaxSet
|
|
|
|
# Starting structure
|
|
base_struct = Structure.from_file("POSCAR")
|
|
|
|
# Define substitutions
|
|
dopants = ["Mn", "Co", "Ni", "Cu"]
|
|
structures = {}
|
|
|
|
for dopant in dopants:
|
|
# Create substituted structure
|
|
trans = SubstitutionTransformation({"Fe": dopant})
|
|
new_struct = trans.apply_transformation(base_struct)
|
|
|
|
# Generate VASP inputs
|
|
vasp_input = MPRelaxSet(new_struct)
|
|
vasp_input.write_input(f"./calcs/Fe_{dopant}")
|
|
|
|
structures[dopant] = new_struct
|
|
|
|
print(f"Generated {len(structures)} structures")
|
|
```
|
|
|
|
### Workflow 2: Phase Diagram Construction
|
|
|
|
Build and analyze phase diagrams from Materials Project data.
|
|
|
|
```python
|
|
from mp_api.client import MPRester
|
|
from pymatgen.analysis.phase_diagram import PhaseDiagram, PDPlotter
|
|
from pymatgen.core import Composition
|
|
|
|
# Get data from Materials Project
|
|
with MPRester() as mpr:
|
|
entries = mpr.get_entries_in_chemsys("Li-Fe-O")
|
|
|
|
# Build phase diagram
|
|
pd = PhaseDiagram(entries)
|
|
|
|
# Analyze specific composition
|
|
comp = Composition("LiFeO2")
|
|
e_above_hull = pd.get_e_above_hull(entries[0])
|
|
|
|
# Get decomposition products
|
|
decomp = pd.get_decomposition(comp)
|
|
print(f"Decomposition: {decomp}")
|
|
|
|
# Visualize
|
|
plotter = PDPlotter(pd)
|
|
plotter.show()
|
|
```
|
|
|
|
### Workflow 3: Surface Energy Calculation
|
|
|
|
Calculate surface energies from slab calculations.
|
|
|
|
```python
|
|
from pymatgen.core.surface import SlabGenerator, generate_all_slabs
|
|
from pymatgen.io.vasp.sets import MPStaticSet, MPRelaxSet
|
|
from pymatgen.core import Structure
|
|
|
|
# Read bulk structure
|
|
bulk = Structure.from_file("bulk_POSCAR")
|
|
|
|
# Get bulk energy (from previous calculation)
|
|
from pymatgen.io.vasp import Vasprun
|
|
bulk_vasprun = Vasprun("bulk/vasprun.xml")
|
|
bulk_energy_per_atom = bulk_vasprun.final_energy / len(bulk)
|
|
|
|
# Generate slabs
|
|
miller_indices = [(1,0,0), (1,1,0), (1,1,1)]
|
|
surface_energies = {}
|
|
|
|
for miller in miller_indices:
|
|
slabgen = SlabGenerator(
|
|
bulk,
|
|
miller_index=miller,
|
|
min_slab_size=10,
|
|
min_vacuum_size=15,
|
|
center_slab=True
|
|
)
|
|
|
|
slab = slabgen.get_slabs()[0]
|
|
|
|
# Write VASP input for slab
|
|
relax = MPRelaxSet(slab)
|
|
relax.write_input(f"./slab_{miller[0]}{miller[1]}{miller[2]}")
|
|
|
|
# After calculation, compute surface energy:
|
|
# slab_vasprun = Vasprun(f"slab_{miller[0]}{miller[1]}{miller[2]}/vasprun.xml")
|
|
# slab_energy = slab_vasprun.final_energy
|
|
# n_atoms = len(slab)
|
|
# area = slab.surface_area # in Ų
|
|
#
|
|
# # Surface energy (J/m²)
|
|
# surf_energy = (slab_energy - n_atoms * bulk_energy_per_atom) / (2 * area)
|
|
# surf_energy *= 16.021766 # Convert eV/Ų to J/m²
|
|
# surface_energies[miller] = surf_energy
|
|
|
|
print(f"Set up calculations for {len(miller_indices)} surfaces")
|
|
```
|
|
|
|
### Workflow 4: Band Structure Calculation
|
|
|
|
Complete workflow for band structure calculations.
|
|
|
|
```python
|
|
from pymatgen.core import Structure
|
|
from pymatgen.io.vasp.sets import MPRelaxSet, MPStaticSet, MPNonSCFSet
|
|
from pymatgen.symmetry.bandstructure import HighSymmKpath
|
|
|
|
# Step 1: Relaxation
|
|
struct = Structure.from_file("initial_POSCAR")
|
|
relax = MPRelaxSet(struct)
|
|
relax.write_input("./1_relax")
|
|
|
|
# After relaxation, read structure
|
|
relaxed_struct = Structure.from_file("1_relax/CONTCAR")
|
|
|
|
# Step 2: Static calculation
|
|
static = MPStaticSet(relaxed_struct)
|
|
static.write_input("./2_static")
|
|
|
|
# Step 3: Band structure (non-self-consistent)
|
|
kpath = HighSymmKpath(relaxed_struct)
|
|
nscf = MPNonSCFSet(relaxed_struct, mode="line") # Band structure mode
|
|
nscf.write_input("./3_bandstructure")
|
|
|
|
# After calculations, analyze
|
|
from pymatgen.io.vasp import Vasprun
|
|
from pymatgen.electronic_structure.plotter import BSPlotter
|
|
|
|
vasprun = Vasprun("3_bandstructure/vasprun.xml")
|
|
bs = vasprun.get_band_structure(line_mode=True)
|
|
|
|
print(f"Band gap: {bs.get_band_gap()}")
|
|
|
|
plotter = BSPlotter(bs)
|
|
plotter.save_plot("band_structure.png")
|
|
```
|
|
|
|
### Workflow 5: Molecular Dynamics Setup
|
|
|
|
Set up and analyze molecular dynamics simulations.
|
|
|
|
```python
|
|
from pymatgen.core import Structure
|
|
from pymatgen.io.vasp.sets import MVLRelaxSet
|
|
from pymatgen.io.vasp.inputs import Incar
|
|
|
|
# Read structure
|
|
struct = Structure.from_file("POSCAR")
|
|
|
|
# Create 2x2x2 supercell for MD
|
|
from pymatgen.transformations.standard_transformations import SupercellTransformation
|
|
trans = SupercellTransformation([[2,0,0],[0,2,0],[0,0,2]])
|
|
supercell = trans.apply_transformation(struct)
|
|
|
|
# Set up VASP input
|
|
md_input = MVLRelaxSet(supercell)
|
|
|
|
# Modify INCAR for MD
|
|
incar = md_input.incar
|
|
incar.update({
|
|
"IBRION": 0, # Molecular dynamics
|
|
"NSW": 1000, # Number of steps
|
|
"POTIM": 2, # Time step (fs)
|
|
"TEBEG": 300, # Initial temperature (K)
|
|
"TEEND": 300, # Final temperature (K)
|
|
"SMASS": 0, # NVT ensemble
|
|
"MDALGO": 2, # Nose-Hoover thermostat
|
|
})
|
|
|
|
md_input.incar = incar
|
|
md_input.write_input("./md_calc")
|
|
```
|
|
|
|
### Workflow 6: Diffusion Analysis
|
|
|
|
Analyze ion diffusion from AIMD trajectories.
|
|
|
|
```python
|
|
from pymatgen.io.vasp import Xdatcar
|
|
from pymatgen.analysis.diffusion.analyzer import DiffusionAnalyzer
|
|
|
|
# Read trajectory from XDATCAR
|
|
xdatcar = Xdatcar("XDATCAR")
|
|
structures = xdatcar.structures
|
|
|
|
# Analyze diffusion for specific species (e.g., Li)
|
|
analyzer = DiffusionAnalyzer.from_structures(
|
|
structures,
|
|
specie="Li",
|
|
temperature=300, # K
|
|
time_step=2, # fs
|
|
step_skip=10 # Skip initial equilibration
|
|
)
|
|
|
|
# Get diffusivity
|
|
diffusivity = analyzer.diffusivity # cm²/s
|
|
conductivity = analyzer.conductivity # mS/cm
|
|
|
|
# Get mean squared displacement
|
|
msd = analyzer.msd
|
|
|
|
# Plot MSD
|
|
analyzer.plot_msd()
|
|
|
|
print(f"Diffusivity: {diffusivity:.2e} cm²/s")
|
|
print(f"Conductivity: {conductivity:.2e} mS/cm")
|
|
```
|
|
|
|
### Workflow 7: Structure Prediction and Enumeration
|
|
|
|
Predict and enumerate possible structures.
|
|
|
|
```python
|
|
from pymatgen.core import Structure, Lattice
|
|
from pymatgen.transformations.advanced_transformations import (
|
|
EnumerateStructureTransformation,
|
|
SubstitutionTransformation
|
|
)
|
|
|
|
# Start with a known structure type (e.g., rocksalt)
|
|
lattice = Lattice.cubic(4.2)
|
|
struct = Structure.from_spacegroup("Fm-3m", lattice, ["Li", "O"], [[0,0,0], [0.5,0.5,0.5]])
|
|
|
|
# Create disordered structure
|
|
from pymatgen.core import Species
|
|
species_on_site = {Species("Li"): 0.5, Species("Na"): 0.5}
|
|
struct[0] = species_on_site # Mixed occupancy on Li site
|
|
|
|
# Enumerate all ordered structures
|
|
trans = EnumerateStructureTransformation(max_cell_size=4)
|
|
ordered_structs = trans.apply_transformation(struct, return_ranked_list=True)
|
|
|
|
print(f"Found {len(ordered_structs)} distinct ordered structures")
|
|
|
|
# Write all structures
|
|
for i, s_dict in enumerate(ordered_structs[:10]): # Top 10
|
|
s_dict['structure'].to(filename=f"ordered_struct_{i}.cif")
|
|
```
|
|
|
|
### Workflow 8: Elastic Constant Calculation
|
|
|
|
Calculate elastic constants using the stress-strain method.
|
|
|
|
```python
|
|
from pymatgen.core import Structure
|
|
from pymatgen.transformations.standard_transformations import DeformStructureTransformation
|
|
from pymatgen.io.vasp.sets import MPStaticSet
|
|
|
|
# Read equilibrium structure
|
|
struct = Structure.from_file("relaxed_POSCAR")
|
|
|
|
# Generate deformed structures
|
|
strains = [0.00, 0.01, 0.02, -0.01, -0.02] # Applied strains
|
|
deformation_sets = []
|
|
|
|
for strain in strains:
|
|
# Apply strain in different directions
|
|
trans = DeformStructureTransformation([[1+strain, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
deformed = trans.apply_transformation(struct)
|
|
|
|
# Set up VASP calculation
|
|
static = MPStaticSet(deformed)
|
|
static.write_input(f"./strain_{strain:.2f}")
|
|
|
|
# After calculations, fit stress vs strain to get elastic constants
|
|
# from pymatgen.analysis.elasticity import ElasticTensor
|
|
# ... (collect stress tensors from OUTCAR)
|
|
# elastic_tensor = ElasticTensor.from_stress_list(stress_list)
|
|
```
|
|
|
|
### Workflow 9: Adsorption Energy Calculation
|
|
|
|
Calculate adsorption energies on surfaces.
|
|
|
|
```python
|
|
from pymatgen.core import Structure, Molecule
|
|
from pymatgen.core.surface import SlabGenerator
|
|
from pymatgen.analysis.adsorption import AdsorbateSiteFinder
|
|
from pymatgen.io.vasp.sets import MPRelaxSet
|
|
|
|
# Generate slab
|
|
bulk = Structure.from_file("bulk_POSCAR")
|
|
slabgen = SlabGenerator(bulk, (1,1,1), 10, 10)
|
|
slab = slabgen.get_slabs()[0]
|
|
|
|
# Find adsorption sites
|
|
asf = AdsorbateSiteFinder(slab)
|
|
ads_sites = asf.find_adsorption_sites()
|
|
|
|
# Create adsorbate
|
|
adsorbate = Molecule("O", [[0, 0, 0]])
|
|
|
|
# Generate structures with adsorbate
|
|
ads_structs = asf.add_adsorbate(adsorbate, ads_sites["ontop"][0])
|
|
|
|
# Set up calculations
|
|
relax_slab = MPRelaxSet(slab)
|
|
relax_slab.write_input("./slab")
|
|
|
|
relax_ads = MPRelaxSet(ads_structs)
|
|
relax_ads.write_input("./slab_with_adsorbate")
|
|
|
|
# After calculations:
|
|
# E_ads = E(slab+adsorbate) - E(slab) - E(adsorbate_gas)
|
|
```
|
|
|
|
### Workflow 10: High-Throughput Materials Screening
|
|
|
|
Screen materials database for specific properties.
|
|
|
|
```python
|
|
from mp_api.client import MPRester
|
|
from pymatgen.core import Structure
|
|
import pandas as pd
|
|
|
|
# Define screening criteria
|
|
def screen_material(material):
|
|
"""Screen for potential battery cathode materials"""
|
|
criteria = {
|
|
"has_li": "Li" in material.composition.elements,
|
|
"stable": material.energy_above_hull < 0.05,
|
|
"good_voltage": 2.5 < material.formation_energy_per_atom < 4.5,
|
|
"electronically_conductive": material.band_gap < 0.5
|
|
}
|
|
return all(criteria.values()), criteria
|
|
|
|
# Query Materials Project
|
|
with MPRester() as mpr:
|
|
# Get potential materials
|
|
materials = mpr.materials.summary.search(
|
|
elements=["Li"],
|
|
energy_above_hull=(0, 0.05),
|
|
)
|
|
|
|
results = []
|
|
for mat in materials:
|
|
passes, criteria = screen_material(mat)
|
|
if passes:
|
|
results.append({
|
|
"material_id": mat.material_id,
|
|
"formula": mat.formula_pretty,
|
|
"energy_above_hull": mat.energy_above_hull,
|
|
"band_gap": mat.band_gap,
|
|
})
|
|
|
|
# Save results
|
|
df = pd.DataFrame(results)
|
|
df.to_csv("screened_materials.csv", index=False)
|
|
|
|
print(f"Found {len(results)} promising materials")
|
|
```
|
|
|
|
## Best Practices for Workflows
|
|
|
|
1. **Modular design**: Break workflows into discrete steps
|
|
2. **Error handling**: Check file existence and calculation convergence
|
|
3. **Documentation**: Track transformation history using `TransformedStructure`
|
|
4. **Version control**: Store input parameters and scripts in git
|
|
5. **Automation**: Use workflow managers (Fireworks, AiiDA) for complex pipelines
|
|
6. **Data management**: Organize calculations in clear directory structures
|
|
7. **Validation**: Always validate intermediate results before proceeding
|
|
|
|
## Integration with Workflow Tools
|
|
|
|
Pymatgen integrates with several workflow management systems:
|
|
|
|
- **Atomate**: Pre-built VASP workflows
|
|
- **Fireworks**: Workflow execution engine
|
|
- **AiiDA**: Provenance tracking and workflow management
|
|
- **Custodian**: Error correction and job monitoring
|
|
|
|
These tools provide robust automation for production calculations.
|