Files
gh-k-dense-ai-claude-scient…/skills/pufferlib/references/policies.md
2025-11-30 08:30:10 +08:00

654 lines
19 KiB
Markdown

# PufferLib Policies Guide
## Overview
PufferLib policies are standard PyTorch modules with optional utilities for observation processing and LSTM integration. The framework provides default architectures and tools while allowing full flexibility in policy design.
## Policy Architecture
### Basic Policy Structure
```python
import torch
import torch.nn as nn
from pufferlib.pytorch import layer_init
class BasicPolicy(nn.Module):
def __init__(self, observation_space, action_space):
super().__init__()
self.observation_space = observation_space
self.action_space = action_space
# Encoder network
self.encoder = nn.Sequential(
layer_init(nn.Linear(observation_space.shape[0], 256)),
nn.ReLU(),
layer_init(nn.Linear(256, 256)),
nn.ReLU()
)
# Policy head (actor)
self.actor = layer_init(nn.Linear(256, action_space.n), std=0.01)
# Value head (critic)
self.critic = layer_init(nn.Linear(256, 1), std=1.0)
def forward(self, observations):
"""Forward pass through policy."""
# Encode observations
features = self.encoder(observations)
# Get action logits and value
logits = self.actor(features)
value = self.critic(features)
return logits, value
def get_action(self, observations, deterministic=False):
"""Sample action from policy."""
logits, value = self.forward(observations)
if deterministic:
action = logits.argmax(dim=-1)
else:
dist = torch.distributions.Categorical(logits=logits)
action = dist.sample()
return action, value
```
### Layer Initialization
PufferLib provides `layer_init` for proper weight initialization:
```python
from pufferlib.pytorch import layer_init
# Default orthogonal initialization
layer = layer_init(nn.Linear(256, 256))
# Custom standard deviation
actor_head = layer_init(nn.Linear(256, num_actions), std=0.01)
critic_head = layer_init(nn.Linear(256, 1), std=1.0)
# Works with any layer type
conv = layer_init(nn.Conv2d(3, 32, kernel_size=8, stride=4))
```
## CNN Policies
For image-based observations:
```python
class CNNPolicy(nn.Module):
def __init__(self, observation_space, action_space):
super().__init__()
# CNN encoder for images
self.encoder = nn.Sequential(
layer_init(nn.Conv2d(3, 32, kernel_size=8, stride=4)),
nn.ReLU(),
layer_init(nn.Conv2d(32, 64, kernel_size=4, stride=2)),
nn.ReLU(),
layer_init(nn.Conv2d(64, 64, kernel_size=3, stride=1)),
nn.ReLU(),
nn.Flatten(),
layer_init(nn.Linear(64 * 7 * 7, 512)),
nn.ReLU()
)
self.actor = layer_init(nn.Linear(512, action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(512, 1), std=1.0)
def forward(self, observations):
# Normalize pixel values
x = observations.float() / 255.0
features = self.encoder(x)
logits = self.actor(features)
value = self.critic(features)
return logits, value
```
### Efficient CNN Architecture
```python
class EfficientCNN(nn.Module):
"""Optimized CNN for Atari-style games."""
def __init__(self, observation_space, action_space):
super().__init__()
in_channels = observation_space.shape[0] # Typically 4 for framestack
self.network = nn.Sequential(
layer_init(nn.Conv2d(in_channels, 32, 8, stride=4)),
nn.ReLU(),
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
nn.ReLU(),
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
nn.ReLU(),
nn.Flatten()
)
# Calculate feature size
with torch.no_grad():
sample = torch.zeros(1, *observation_space.shape)
n_features = self.network(sample).shape[1]
self.fc = layer_init(nn.Linear(n_features, 512))
self.actor = layer_init(nn.Linear(512, action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(512, 1), std=1.0)
def forward(self, x):
x = x.float() / 255.0
x = self.network(x)
x = torch.relu(self.fc(x))
return self.actor(x), self.critic(x)
```
## Recurrent Policies (LSTM)
PufferLib provides optimized LSTM integration with automatic recurrence handling:
```python
from pufferlib.pytorch import LSTMWrapper
class RecurrentPolicy(nn.Module):
def __init__(self, observation_space, action_space, hidden_size=256):
super().__init__()
# Observation encoder
self.encoder = nn.Sequential(
layer_init(nn.Linear(observation_space.shape[0], 128)),
nn.ReLU()
)
# LSTM layer
self.lstm = nn.LSTM(128, hidden_size, num_layers=1)
# Policy and value heads
self.actor = layer_init(nn.Linear(hidden_size, action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(hidden_size, 1), std=1.0)
# Hidden state
self.hidden_size = hidden_size
def forward(self, observations, state=None):
"""
Args:
observations: (batch, obs_dim)
state: Optional (h, c) tuple for LSTM
Returns:
logits, value, new_state
"""
batch_size = observations.shape[0]
# Encode observations
features = self.encoder(observations)
# Initialize hidden state if needed
if state is None:
h = torch.zeros(1, batch_size, self.hidden_size, device=features.device)
c = torch.zeros(1, batch_size, self.hidden_size, device=features.device)
state = (h, c)
# LSTM forward
features = features.unsqueeze(0) # Add sequence dimension
lstm_out, new_state = self.lstm(features, state)
lstm_out = lstm_out.squeeze(0)
# Get outputs
logits = self.actor(lstm_out)
value = self.critic(lstm_out)
return logits, value, new_state
```
### LSTM Optimization
PufferLib's LSTM optimization uses LSTMCell during rollouts and LSTM during training for up to 3x faster inference:
```python
class OptimizedLSTMPolicy(nn.Module):
def __init__(self, observation_space, action_space, hidden_size=256):
super().__init__()
self.encoder = nn.Sequential(
layer_init(nn.Linear(observation_space.shape[0], 128)),
nn.ReLU()
)
# Use LSTMCell for step-by-step inference
self.lstm_cell = nn.LSTMCell(128, hidden_size)
# Use LSTM for batch training
self.lstm = nn.LSTM(128, hidden_size, num_layers=1)
self.actor = layer_init(nn.Linear(hidden_size, action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(hidden_size, 1), std=1.0)
self.hidden_size = hidden_size
def encode_observations(self, observations, state):
"""Fast inference using LSTMCell."""
features = self.encoder(observations)
if state is None:
h = torch.zeros(observations.shape[0], self.hidden_size, device=features.device)
c = torch.zeros(observations.shape[0], self.hidden_size, device=features.device)
else:
h, c = state
# Step-by-step with LSTMCell (faster for inference)
h, c = self.lstm_cell(features, (h, c))
logits = self.actor(h)
value = self.critic(h)
return logits, value, (h, c)
def decode_actions(self, observations, actions, state):
"""Batch training using LSTM."""
seq_len, batch_size = observations.shape[:2]
# Reshape for LSTM
obs_flat = observations.reshape(seq_len * batch_size, -1)
features = self.encoder(obs_flat)
features = features.reshape(seq_len, batch_size, -1)
if state is None:
h = torch.zeros(1, batch_size, self.hidden_size, device=features.device)
c = torch.zeros(1, batch_size, self.hidden_size, device=features.device)
state = (h, c)
# Batch processing with LSTM (faster for training)
lstm_out, new_state = self.lstm(features, state)
# Flatten back
lstm_out = lstm_out.reshape(seq_len * batch_size, -1)
logits = self.actor(lstm_out)
value = self.critic(lstm_out)
return logits, value, new_state
```
## Multi-Input Policies
For environments with multiple observation types:
```python
class MultiInputPolicy(nn.Module):
def __init__(self, observation_space, action_space):
super().__init__()
# Separate encoders for different observation types
self.image_encoder = nn.Sequential(
layer_init(nn.Conv2d(3, 32, 8, stride=4)),
nn.ReLU(),
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
nn.ReLU(),
nn.Flatten()
)
self.vector_encoder = nn.Sequential(
layer_init(nn.Linear(observation_space['vector'].shape[0], 128)),
nn.ReLU()
)
# Combine features
combined_size = 64 * 9 * 9 + 128 # Image features + vector features
self.combiner = nn.Sequential(
layer_init(nn.Linear(combined_size, 512)),
nn.ReLU()
)
self.actor = layer_init(nn.Linear(512, action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(512, 1), std=1.0)
def forward(self, observations):
# Process each observation type
image_features = self.image_encoder(observations['image'].float() / 255.0)
vector_features = self.vector_encoder(observations['vector'])
# Combine
combined = torch.cat([image_features, vector_features], dim=-1)
features = self.combiner(combined)
return self.actor(features), self.critic(features)
```
## Continuous Action Policies
For continuous control tasks:
```python
class ContinuousPolicy(nn.Module):
def __init__(self, observation_space, action_space):
super().__init__()
self.encoder = nn.Sequential(
layer_init(nn.Linear(observation_space.shape[0], 256)),
nn.ReLU(),
layer_init(nn.Linear(256, 256)),
nn.ReLU()
)
# Mean of action distribution
self.actor_mean = layer_init(nn.Linear(256, action_space.shape[0]), std=0.01)
# Log std of action distribution
self.actor_logstd = nn.Parameter(torch.zeros(1, action_space.shape[0]))
# Value head
self.critic = layer_init(nn.Linear(256, 1), std=1.0)
def forward(self, observations):
features = self.encoder(observations)
action_mean = self.actor_mean(features)
action_std = torch.exp(self.actor_logstd)
value = self.critic(features)
return action_mean, action_std, value
def get_action(self, observations, deterministic=False):
action_mean, action_std, value = self.forward(observations)
if deterministic:
return action_mean, value
else:
dist = torch.distributions.Normal(action_mean, action_std)
action = dist.sample()
return torch.tanh(action), value # Bound actions to [-1, 1]
```
## Observation Processing
PufferLib provides utilities for unflattening observations:
```python
from pufferlib.pytorch import unflatten_observations
class PolicyWithUnflatten(nn.Module):
def __init__(self, observation_space, action_space):
super().__init__()
self.observation_space = observation_space
# Define encoders for each observation component
self.encoders = nn.ModuleDict({
'image': self._make_image_encoder(),
'vector': self._make_vector_encoder()
})
# ... rest of policy ...
def forward(self, flat_observations):
# Unflatten observations into structured format
observations = unflatten_observations(
flat_observations,
self.observation_space
)
# Process each component
image_features = self.encoders['image'](observations['image'])
vector_features = self.encoders['vector'](observations['vector'])
# Combine and continue...
```
## Multi-Agent Policies
### Shared Parameters
All agents use the same policy:
```python
class SharedMultiAgentPolicy(nn.Module):
def __init__(self, observation_space, action_space, num_agents):
super().__init__()
self.num_agents = num_agents
# Single policy shared across all agents
self.encoder = nn.Sequential(
layer_init(nn.Linear(observation_space.shape[0], 256)),
nn.ReLU()
)
self.actor = layer_init(nn.Linear(256, action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(256, 1), std=1.0)
def forward(self, observations):
"""
Args:
observations: (batch * num_agents, obs_dim)
Returns:
logits: (batch * num_agents, num_actions)
values: (batch * num_agents, 1)
"""
features = self.encoder(observations)
return self.actor(features), self.critic(features)
```
### Independent Parameters
Each agent has its own policy:
```python
class IndependentMultiAgentPolicy(nn.Module):
def __init__(self, observation_space, action_space, num_agents):
super().__init__()
self.num_agents = num_agents
# Separate policy for each agent
self.policies = nn.ModuleList([
self._make_policy(observation_space, action_space)
for _ in range(num_agents)
])
def _make_policy(self, observation_space, action_space):
return nn.Sequential(
layer_init(nn.Linear(observation_space.shape[0], 256)),
nn.ReLU(),
layer_init(nn.Linear(256, 256)),
nn.ReLU()
)
def forward(self, observations, agent_ids):
"""
Args:
observations: (batch, obs_dim)
agent_ids: (batch,) which agent each obs belongs to
"""
outputs = []
for agent_id in range(self.num_agents):
mask = agent_ids == agent_id
if mask.any():
agent_obs = observations[mask]
agent_out = self.policies[agent_id](agent_obs)
outputs.append(agent_out)
return torch.cat(outputs, dim=0)
```
## Advanced Architectures
### Attention-Based Policy
```python
class AttentionPolicy(nn.Module):
def __init__(self, observation_space, action_space, d_model=256, nhead=8):
super().__init__()
self.encoder = layer_init(nn.Linear(observation_space.shape[0], d_model))
self.attention = nn.MultiheadAttention(d_model, nhead, batch_first=True)
self.actor = layer_init(nn.Linear(d_model, action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(d_model, 1), std=1.0)
def forward(self, observations):
# Encode
features = self.encoder(observations)
# Self-attention
features = features.unsqueeze(1) # Add sequence dimension
attn_out, _ = self.attention(features, features, features)
attn_out = attn_out.squeeze(1)
return self.actor(attn_out), self.critic(attn_out)
```
### Residual Policy
```python
class ResidualBlock(nn.Module):
def __init__(self, dim):
super().__init__()
self.block = nn.Sequential(
layer_init(nn.Linear(dim, dim)),
nn.ReLU(),
layer_init(nn.Linear(dim, dim))
)
def forward(self, x):
return x + self.block(x)
class ResidualPolicy(nn.Module):
def __init__(self, observation_space, action_space, num_blocks=4):
super().__init__()
dim = 256
self.encoder = layer_init(nn.Linear(observation_space.shape[0], dim))
self.blocks = nn.Sequential(
*[ResidualBlock(dim) for _ in range(num_blocks)]
)
self.actor = layer_init(nn.Linear(dim, action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(dim, 1), std=1.0)
def forward(self, observations):
x = torch.relu(self.encoder(observations))
x = self.blocks(x)
return self.actor(x), self.critic(x)
```
## Policy Best Practices
### Initialization
```python
# Always use layer_init for proper initialization
good_layer = layer_init(nn.Linear(256, 256))
# Use small std for actor head (more stable early training)
actor = layer_init(nn.Linear(256, num_actions), std=0.01)
# Use std=1.0 for critic head
critic = layer_init(nn.Linear(256, 1), std=1.0)
```
### Observation Normalization
```python
class NormalizedPolicy(nn.Module):
def __init__(self, observation_space, action_space):
super().__init__()
# Running statistics for normalization
self.obs_mean = nn.Parameter(torch.zeros(observation_space.shape[0]), requires_grad=False)
self.obs_std = nn.Parameter(torch.ones(observation_space.shape[0]), requires_grad=False)
# ... rest of policy ...
def forward(self, observations):
# Normalize observations
normalized_obs = (observations - self.obs_mean) / (self.obs_std + 1e-8)
# Continue with normalized observations
return self.policy(normalized_obs)
def update_normalization(self, observations):
"""Update running statistics."""
self.obs_mean.data = observations.mean(dim=0)
self.obs_std.data = observations.std(dim=0)
```
### Gradient Clipping
```python
# PufferLib trainer handles gradient clipping automatically
trainer = PuffeRL(
env=env,
policy=policy,
max_grad_norm=0.5 # Clip gradients to this norm
)
```
### Model Compilation
```python
# Enable torch.compile for faster training (PyTorch 2.0+)
policy = MyPolicy(observation_space, action_space)
# Compile the model
policy = torch.compile(policy, mode='reduce-overhead')
# Use with trainer
trainer = PuffeRL(env=env, policy=policy, compile=True)
```
## Debugging Policies
### Check Output Shapes
```python
def test_policy_shapes(policy, observation_space, batch_size=32):
"""Verify policy output shapes."""
# Create dummy observations
obs = torch.randn(batch_size, *observation_space.shape)
# Forward pass
logits, value = policy(obs)
# Check shapes
assert logits.shape == (batch_size, policy.action_space.n)
assert value.shape == (batch_size, 1)
print("✓ Policy shapes correct")
```
### Verify Gradients
```python
def check_gradients(policy, observation_space):
"""Check that gradients flow properly."""
obs = torch.randn(1, *observation_space.shape, requires_grad=True)
logits, value = policy(obs)
# Backward pass
loss = logits.sum() + value.sum()
loss.backward()
# Check gradients exist
for name, param in policy.named_parameters():
if param.grad is None:
print(f"⚠ No gradient for {name}")
elif torch.isnan(param.grad).any():
print(f"⚠ NaN gradient for {name}")
else:
print(f"✓ Gradient OK for {name}")
```