214 lines
4.8 KiB
Markdown
214 lines
4.8 KiB
Markdown
# Plotly Express - High-Level API
|
|
|
|
Plotly Express (px) is a high-level interface for creating data visualizations with minimal code (typically 1-5 lines).
|
|
|
|
## Installation
|
|
|
|
```bash
|
|
uv pip install plotly
|
|
```
|
|
|
|
## Key Advantages
|
|
|
|
- Concise syntax for common chart types
|
|
- Automatic color encoding and legends
|
|
- Works seamlessly with pandas DataFrames
|
|
- Smart defaults for layout and styling
|
|
- Returns graph_objects.Figure for further customization
|
|
|
|
## Basic Usage Pattern
|
|
|
|
```python
|
|
import plotly.express as px
|
|
import pandas as pd
|
|
|
|
# Most functions follow this pattern
|
|
fig = px.chart_type(
|
|
data_frame=df,
|
|
x="column_x",
|
|
y="column_y",
|
|
color="category_column", # Auto-color by category
|
|
size="size_column", # Size by values
|
|
title="Chart Title"
|
|
)
|
|
fig.show()
|
|
```
|
|
|
|
## 40+ Chart Types
|
|
|
|
### Basic Charts
|
|
- `px.scatter()` - Scatter plots with optional trendlines
|
|
- `px.line()` - Line charts for time series
|
|
- `px.bar()` - Bar charts (vertical/horizontal)
|
|
- `px.area()` - Area charts
|
|
- `px.pie()` - Pie charts
|
|
|
|
### Statistical Charts
|
|
- `px.histogram()` - Histograms with automatic binning
|
|
- `px.box()` - Box plots for distributions
|
|
- `px.violin()` - Violin plots
|
|
- `px.strip()` - Strip plots
|
|
- `px.ecdf()` - Empirical cumulative distribution
|
|
|
|
### Maps
|
|
- `px.scatter_geo()` - Geographic scatter plots
|
|
- `px.choropleth()` - Choropleth maps
|
|
- `px.scatter_mapbox()` - Mapbox scatter plots
|
|
- `px.density_mapbox()` - Density heatmaps on maps
|
|
|
|
### Specialized
|
|
- `px.sunburst()` - Hierarchical sunburst charts
|
|
- `px.treemap()` - Treemap visualizations
|
|
- `px.funnel()` - Funnel charts
|
|
- `px.parallel_coordinates()` - Parallel coordinates
|
|
- `px.scatter_matrix()` - Scatter matrix (SPLOM)
|
|
- `px.density_heatmap()` - 2D density heatmaps
|
|
- `px.density_contour()` - Density contours
|
|
|
|
### 3D Charts
|
|
- `px.scatter_3d()` - 3D scatter plots
|
|
- `px.line_3d()` - 3D line plots
|
|
|
|
## Common Parameters
|
|
|
|
All Plotly Express functions support these styling parameters:
|
|
|
|
```python
|
|
fig = px.scatter(
|
|
df, x="x", y="y",
|
|
# Dimensions
|
|
width=800,
|
|
height=600,
|
|
|
|
# Labels
|
|
title="Figure Title",
|
|
labels={"x": "X Axis", "y": "Y Axis"},
|
|
|
|
# Colors
|
|
color="category",
|
|
color_discrete_map={"A": "red", "B": "blue"},
|
|
color_continuous_scale="Viridis",
|
|
|
|
# Ordering
|
|
category_orders={"category": ["A", "B", "C"]},
|
|
|
|
# Theming
|
|
template="plotly_dark" # or "simple_white", "seaborn", "ggplot2"
|
|
)
|
|
```
|
|
|
|
## Data Format
|
|
|
|
Plotly Express works with:
|
|
- **Long-form data** (tidy): One row per observation
|
|
- **Wide-form data**: Multiple columns as separate traces
|
|
|
|
```python
|
|
# Long-form (preferred)
|
|
df_long = pd.DataFrame({
|
|
'fruit': ['apple', 'orange', 'apple', 'orange'],
|
|
'contestant': ['A', 'A', 'B', 'B'],
|
|
'count': [1, 3, 2, 4]
|
|
})
|
|
fig = px.bar(df_long, x='fruit', y='count', color='contestant')
|
|
|
|
# Wide-form
|
|
df_wide = pd.DataFrame({
|
|
'fruit': ['apple', 'orange'],
|
|
'A': [1, 3],
|
|
'B': [2, 4]
|
|
})
|
|
fig = px.bar(df_wide, x='fruit', y=['A', 'B'])
|
|
```
|
|
|
|
## Trendlines
|
|
|
|
Add statistical trendlines to scatter plots:
|
|
|
|
```python
|
|
fig = px.scatter(
|
|
df, x="x", y="y",
|
|
trendline="ols", # "ols", "lowess", "rolling", "ewm", "expanding"
|
|
trendline_options=dict(log_x=True) # Additional options
|
|
)
|
|
```
|
|
|
|
## Faceting (Subplots)
|
|
|
|
Create faceted plots automatically:
|
|
|
|
```python
|
|
fig = px.scatter(
|
|
df, x="x", y="y",
|
|
facet_row="category_1", # Separate rows
|
|
facet_col="category_2", # Separate columns
|
|
facet_col_wrap=3 # Wrap columns
|
|
)
|
|
```
|
|
|
|
## Animation
|
|
|
|
Create animated visualizations:
|
|
|
|
```python
|
|
fig = px.scatter(
|
|
df, x="gdp", y="life_exp",
|
|
animation_frame="year", # Animate over this column
|
|
animation_group="country", # Group animated elements
|
|
size="population",
|
|
color="continent",
|
|
hover_name="country"
|
|
)
|
|
```
|
|
|
|
## Hover Data
|
|
|
|
Customize hover tooltips:
|
|
|
|
```python
|
|
fig = px.scatter(
|
|
df, x="x", y="y",
|
|
hover_data={
|
|
"extra_col": True, # Add column
|
|
"x": ":.2f", # Format existing
|
|
"hidden_col": False # Hide column
|
|
},
|
|
hover_name="name_column" # Bold title in hover
|
|
)
|
|
```
|
|
|
|
## Further Customization
|
|
|
|
Plotly Express returns a `graph_objects.Figure` that can be further customized:
|
|
|
|
```python
|
|
fig = px.scatter(df, x="x", y="y")
|
|
|
|
# Use graph_objects methods
|
|
fig.update_layout(
|
|
title="Custom Title",
|
|
xaxis_title="X Axis",
|
|
font=dict(size=14)
|
|
)
|
|
|
|
fig.update_traces(
|
|
marker=dict(size=10, opacity=0.7)
|
|
)
|
|
|
|
fig.add_hline(y=0, line_dash="dash")
|
|
```
|
|
|
|
## When to Use Plotly Express
|
|
|
|
Use Plotly Express when:
|
|
- Creating standard chart types quickly
|
|
- Working with pandas DataFrames
|
|
- Need automatic color/size encoding
|
|
- Want sensible defaults with minimal code
|
|
|
|
Use graph_objects when:
|
|
- Building custom chart types not in px
|
|
- Need fine-grained control over every element
|
|
- Creating complex multi-trace figures
|
|
- Building specialized visualizations
|