Files
gh-k-dense-ai-claude-scient…/skills/plotly/reference/plotly-express.md
2025-11-30 08:30:10 +08:00

214 lines
4.8 KiB
Markdown

# Plotly Express - High-Level API
Plotly Express (px) is a high-level interface for creating data visualizations with minimal code (typically 1-5 lines).
## Installation
```bash
uv pip install plotly
```
## Key Advantages
- Concise syntax for common chart types
- Automatic color encoding and legends
- Works seamlessly with pandas DataFrames
- Smart defaults for layout and styling
- Returns graph_objects.Figure for further customization
## Basic Usage Pattern
```python
import plotly.express as px
import pandas as pd
# Most functions follow this pattern
fig = px.chart_type(
data_frame=df,
x="column_x",
y="column_y",
color="category_column", # Auto-color by category
size="size_column", # Size by values
title="Chart Title"
)
fig.show()
```
## 40+ Chart Types
### Basic Charts
- `px.scatter()` - Scatter plots with optional trendlines
- `px.line()` - Line charts for time series
- `px.bar()` - Bar charts (vertical/horizontal)
- `px.area()` - Area charts
- `px.pie()` - Pie charts
### Statistical Charts
- `px.histogram()` - Histograms with automatic binning
- `px.box()` - Box plots for distributions
- `px.violin()` - Violin plots
- `px.strip()` - Strip plots
- `px.ecdf()` - Empirical cumulative distribution
### Maps
- `px.scatter_geo()` - Geographic scatter plots
- `px.choropleth()` - Choropleth maps
- `px.scatter_mapbox()` - Mapbox scatter plots
- `px.density_mapbox()` - Density heatmaps on maps
### Specialized
- `px.sunburst()` - Hierarchical sunburst charts
- `px.treemap()` - Treemap visualizations
- `px.funnel()` - Funnel charts
- `px.parallel_coordinates()` - Parallel coordinates
- `px.scatter_matrix()` - Scatter matrix (SPLOM)
- `px.density_heatmap()` - 2D density heatmaps
- `px.density_contour()` - Density contours
### 3D Charts
- `px.scatter_3d()` - 3D scatter plots
- `px.line_3d()` - 3D line plots
## Common Parameters
All Plotly Express functions support these styling parameters:
```python
fig = px.scatter(
df, x="x", y="y",
# Dimensions
width=800,
height=600,
# Labels
title="Figure Title",
labels={"x": "X Axis", "y": "Y Axis"},
# Colors
color="category",
color_discrete_map={"A": "red", "B": "blue"},
color_continuous_scale="Viridis",
# Ordering
category_orders={"category": ["A", "B", "C"]},
# Theming
template="plotly_dark" # or "simple_white", "seaborn", "ggplot2"
)
```
## Data Format
Plotly Express works with:
- **Long-form data** (tidy): One row per observation
- **Wide-form data**: Multiple columns as separate traces
```python
# Long-form (preferred)
df_long = pd.DataFrame({
'fruit': ['apple', 'orange', 'apple', 'orange'],
'contestant': ['A', 'A', 'B', 'B'],
'count': [1, 3, 2, 4]
})
fig = px.bar(df_long, x='fruit', y='count', color='contestant')
# Wide-form
df_wide = pd.DataFrame({
'fruit': ['apple', 'orange'],
'A': [1, 3],
'B': [2, 4]
})
fig = px.bar(df_wide, x='fruit', y=['A', 'B'])
```
## Trendlines
Add statistical trendlines to scatter plots:
```python
fig = px.scatter(
df, x="x", y="y",
trendline="ols", # "ols", "lowess", "rolling", "ewm", "expanding"
trendline_options=dict(log_x=True) # Additional options
)
```
## Faceting (Subplots)
Create faceted plots automatically:
```python
fig = px.scatter(
df, x="x", y="y",
facet_row="category_1", # Separate rows
facet_col="category_2", # Separate columns
facet_col_wrap=3 # Wrap columns
)
```
## Animation
Create animated visualizations:
```python
fig = px.scatter(
df, x="gdp", y="life_exp",
animation_frame="year", # Animate over this column
animation_group="country", # Group animated elements
size="population",
color="continent",
hover_name="country"
)
```
## Hover Data
Customize hover tooltips:
```python
fig = px.scatter(
df, x="x", y="y",
hover_data={
"extra_col": True, # Add column
"x": ":.2f", # Format existing
"hidden_col": False # Hide column
},
hover_name="name_column" # Bold title in hover
)
```
## Further Customization
Plotly Express returns a `graph_objects.Figure` that can be further customized:
```python
fig = px.scatter(df, x="x", y="y")
# Use graph_objects methods
fig.update_layout(
title="Custom Title",
xaxis_title="X Axis",
font=dict(size=14)
)
fig.update_traces(
marker=dict(size=10, opacity=0.7)
)
fig.add_hline(y=0, line_dash="dash")
```
## When to Use Plotly Express
Use Plotly Express when:
- Creating standard chart types quickly
- Working with pandas DataFrames
- Need automatic color/size encoding
- Want sensible defaults with minimal code
Use graph_objects when:
- Building custom chart types not in px
- Need fine-grained control over every element
- Creating complex multi-trace figures
- Building specialized visualizations