Files
gh-k-dense-ai-claude-scient…/skills/neurokit2/references/epochs_events.md
2025-11-30 08:30:10 +08:00

472 lines
14 KiB
Markdown

# Epochs and Event-Related Analysis
## Overview
Event-related analysis examines physiological responses time-locked to specific stimuli or events. NeuroKit2 provides tools for event detection, epoch creation, averaging, and event-related feature extraction across all signal types.
## Event Detection
### events_find()
Automatically detect events/triggers in a signal based on threshold crossings or changes.
```python
events = nk.events_find(event_channel, threshold=0.5, threshold_keep='above',
duration_min=1, inter_min=0)
```
**Parameters:**
- `threshold`: Detection threshold value
- `threshold_keep`: `'above'` or `'below'` threshold
- `duration_min`: Minimum event duration (samples) to keep
- `inter_min`: Minimum interval between events (samples)
**Returns:**
- Dictionary with:
- `'onset'`: Event onset indices
- `'offset'`: Event offset indices (if applicable)
- `'duration'`: Event durations
- `'label'`: Event labels (if multiple event types)
**Common use cases:**
**TTL triggers from experiments:**
```python
# Trigger channel: 0V baseline, 5V pulses during events
events = nk.events_find(trigger_channel, threshold=2.5, threshold_keep='above')
```
**Button presses:**
```python
# Detect when button signal goes high
button_events = nk.events_find(button_signal, threshold=0.5, threshold_keep='above',
duration_min=10) # Debounce
```
**State changes:**
```python
# Detect periods above/below threshold
high_arousal = nk.events_find(eda_signal, threshold='auto', duration_min=100)
```
### events_plot()
Visualize event timing relative to signals.
```python
nk.events_plot(events, signal)
```
**Displays:**
- Signal trace
- Event markers (vertical lines or shaded regions)
- Event labels
**Use case:**
- Verify event detection accuracy
- Inspect temporal distribution of events
- Quality control before epoching
## Epoch Creation
### epochs_create()
Create epochs (segments) of data around events for event-related analysis.
```python
epochs = nk.epochs_create(data, events, sampling_rate=1000,
epochs_start=-0.5, epochs_end=2.0,
event_labels=None, event_conditions=None,
baseline_correction=False)
```
**Parameters:**
- `data`: DataFrame with signals or single signal
- `events`: Event indices or dictionary from `events_find()`
- `sampling_rate`: Signal sampling rate (Hz)
- `epochs_start`: Start time relative to event (seconds, negative = before)
- `epochs_end`: End time relative to event (seconds, positive = after)
- `event_labels`: List of labels for each event (optional)
- `event_conditions`: List of condition names for each event (optional)
- `baseline_correction`: If True, subtract baseline mean from each epoch
**Returns:**
- Dictionary of DataFrames, one per epoch
- Each DataFrame contains signal data with time relative to event (Index=0 at event onset)
- Includes `'Label'` and `'Condition'` columns if provided
**Typical epoch windows:**
- **Visual ERP**: -0.2 to 1.0 seconds (200 ms baseline, 1 s post-stimulus)
- **Cardiac orienting**: -1.0 to 10 seconds (capture anticipation and response)
- **EMG startle**: -0.1 to 0.5 seconds (brief response)
- **EDA SCR**: -1.0 to 10 seconds (1-3 s latency, slow recovery)
### Event Labels and Conditions
Organize events by type and experimental conditions:
```python
# Example: Emotional picture experiment
event_times = [1000, 2500, 4200, 5800] # Event onsets in samples
event_labels = ['trial1', 'trial2', 'trial3', 'trial4']
event_conditions = ['positive', 'negative', 'positive', 'neutral']
epochs = nk.epochs_create(signals, events=event_times, sampling_rate=1000,
epochs_start=-1, epochs_end=5,
event_labels=event_labels,
event_conditions=event_conditions)
```
**Access epochs:**
```python
# Epoch by number
epoch_1 = epochs['1']
# Filter by condition
positive_epochs = {k: v for k, v in epochs.items() if v['Condition'][0] == 'positive'}
```
### Baseline Correction
Remove pre-stimulus baseline from epochs to isolate event-related changes:
**Automatic (during epoch creation):**
```python
epochs = nk.epochs_create(data, events, sampling_rate=1000,
epochs_start=-0.5, epochs_end=2.0,
baseline_correction=True) # Subtracts mean of entire baseline
```
**Manual (after epoch creation):**
```python
# Subtract baseline period mean
baseline_start = -0.5 # seconds
baseline_end = 0.0 # seconds
for key, epoch in epochs.items():
baseline_mask = (epoch.index >= baseline_start) & (epoch.index < baseline_end)
baseline_mean = epoch[baseline_mask].mean()
epochs[key] = epoch - baseline_mean
```
**When to baseline correct:**
- **ERPs**: Always (isolates event-related change)
- **Cardiac/EDA**: Usually (removes inter-individual baseline differences)
- **Absolute measures**: Sometimes not desired (e.g., analyzing absolute amplitude)
## Epoch Analysis and Visualization
### epochs_plot()
Visualize individual or averaged epochs.
```python
nk.epochs_plot(epochs, column='ECG_Rate', condition=None, show=True)
```
**Parameters:**
- `column`: Which signal column to plot
- `condition`: Plot only specific condition (optional)
**Displays:**
- Individual epoch traces (semi-transparent)
- Average across epochs (bold line)
- Optional: Shaded error (SEM or SD)
**Use cases:**
- Visualize event-related responses
- Compare conditions
- Identify outlier epochs
### epochs_average()
Compute grand average across epochs with statistics.
```python
average_epochs = nk.epochs_average(epochs, output='dict')
```
**Parameters:**
- `output`: `'dict'` (default) or `'df'` (DataFrame)
**Returns:**
- Dictionary or DataFrame with:
- `'Mean'`: Average across epochs at each time point
- `'SD'`: Standard deviation
- `'SE'`: Standard error of mean
- `'CI_lower'`, `'CI_upper'`: 95% confidence intervals
**Use case:**
- Compute event-related potentials (ERPs)
- Grand average cardiac/EDA/EMG responses
- Group-level analysis
**Condition-specific averaging:**
```python
# Separate averages by condition
positive_epochs = {k: v for k, v in epochs.items() if v['Condition'][0] == 'positive'}
negative_epochs = {k: v for k, v in epochs.items() if v['Condition'][0] == 'negative'}
avg_positive = nk.epochs_average(positive_epochs)
avg_negative = nk.epochs_average(negative_epochs)
```
### epochs_to_df()
Convert epochs dictionary to unified DataFrame.
```python
epochs_df = nk.epochs_to_df(epochs)
```
**Returns:**
- Single DataFrame with all epochs stacked
- Includes `'Epoch'`, `'Time'`, `'Label'`, `'Condition'` columns
- Facilitates statistical analysis and plotting with pandas/seaborn
**Use case:**
- Prepare data for mixed-effects models
- Plotting with seaborn/plotly
- Export to R or statistical software
### epochs_to_array()
Convert epochs to 3D NumPy array.
```python
epochs_array = nk.epochs_to_array(epochs, column='ECG_Rate')
```
**Returns:**
- 3D array: (n_epochs, n_timepoints, n_columns)
**Use case:**
- Machine learning input (epoched features)
- Custom array-based analysis
- Statistical tests on array data
## Signal-Specific Event-Related Analysis
NeuroKit2 provides specialized event-related analysis for each signal type:
### ECG Event-Related
```python
ecg_epochs = nk.epochs_create(ecg_signals, events, sampling_rate=1000,
epochs_start=-1, epochs_end=10)
ecg_results = nk.ecg_eventrelated(ecg_epochs)
```
**Computed metrics:**
- `ECG_Rate_Baseline`: Heart rate before event
- `ECG_Rate_Min/Max`: Minimum/maximum rate during epoch
- `ECG_Phase_*`: Cardiac phase at event onset
- Rate dynamics across time windows
### EDA Event-Related
```python
eda_epochs = nk.epochs_create(eda_signals, events, sampling_rate=100,
epochs_start=-1, epochs_end=10)
eda_results = nk.eda_eventrelated(eda_epochs)
```
**Computed metrics:**
- `EDA_SCR`: Presence of SCR (binary)
- `SCR_Amplitude`: Maximum SCR amplitude
- `SCR_Latency`: Time to SCR onset
- `SCR_RiseTime`, `SCR_RecoveryTime`
- `EDA_Tonic`: Mean tonic level
### RSP Event-Related
```python
rsp_epochs = nk.epochs_create(rsp_signals, events, sampling_rate=100,
epochs_start=-0.5, epochs_end=5)
rsp_results = nk.rsp_eventrelated(rsp_epochs)
```
**Computed metrics:**
- `RSP_Rate_Mean`: Average breathing rate
- `RSP_Amplitude_Mean`: Average breath depth
- `RSP_Phase`: Respiratory phase at event
- Rate/amplitude dynamics
### EMG Event-Related
```python
emg_epochs = nk.epochs_create(emg_signals, events, sampling_rate=1000,
epochs_start=-0.1, epochs_end=1.0)
emg_results = nk.emg_eventrelated(emg_epochs)
```
**Computed metrics:**
- `EMG_Activation`: Presence of activation
- `EMG_Amplitude_Mean/Max`: Amplitude statistics
- `EMG_Onset_Latency`: Time to activation onset
- `EMG_Bursts`: Number of activation bursts
### EOG Event-Related
```python
eog_epochs = nk.epochs_create(eog_signals, events, sampling_rate=500,
epochs_start=-0.5, epochs_end=2.0)
eog_results = nk.eog_eventrelated(eog_epochs)
```
**Computed metrics:**
- `EOG_Blinks_N`: Number of blinks during epoch
- `EOG_Rate_Mean`: Blink rate
- Temporal blink distribution
### PPG Event-Related
```python
ppg_epochs = nk.epochs_create(ppg_signals, events, sampling_rate=100,
epochs_start=-1, epochs_end=10)
ppg_results = nk.ppg_eventrelated(ppg_epochs)
```
**Computed metrics:**
- Similar to ECG: rate dynamics, phase information
## Practical Workflows
### Complete Event-Related Analysis Pipeline
```python
import neurokit2 as nk
# 1. Process physiological signals
ecg_signals, ecg_info = nk.ecg_process(ecg, sampling_rate=1000)
eda_signals, eda_info = nk.eda_process(eda, sampling_rate=100)
# 2. Align sampling rates if needed
eda_signals_resampled = nk.signal_resample(eda_signals, sampling_rate=100,
desired_sampling_rate=1000)
# 3. Merge signals into single DataFrame
signals = pd.concat([ecg_signals, eda_signals_resampled], axis=1)
# 4. Detect events
events = nk.events_find(trigger_channel, threshold=0.5)
# 5. Add event labels and conditions
event_labels = ['trial1', 'trial2', 'trial3', ...]
event_conditions = ['condition_A', 'condition_B', 'condition_A', ...]
# 6. Create epochs
epochs = nk.epochs_create(signals, events, sampling_rate=1000,
epochs_start=-1.0, epochs_end=5.0,
event_labels=event_labels,
event_conditions=event_conditions,
baseline_correction=True)
# 7. Signal-specific event-related analysis
ecg_results = nk.ecg_eventrelated(epochs)
eda_results = nk.eda_eventrelated(epochs)
# 8. Merge results
results = pd.merge(ecg_results, eda_results, left_index=True, right_index=True)
# 9. Statistical analysis by condition
results['Condition'] = event_conditions
condition_comparison = results.groupby('Condition').mean()
```
### Handling Multiple Event Types
```python
# Different event types with different markers
event_type1 = nk.events_find(trigger_ch1, threshold=0.5)
event_type2 = nk.events_find(trigger_ch2, threshold=0.5)
# Combine events with labels
all_events = np.concatenate([event_type1['onset'], event_type2['onset']])
event_labels = ['type1'] * len(event_type1['onset']) + ['type2'] * len(event_type2['onset'])
# Sort by time
sort_idx = np.argsort(all_events)
all_events = all_events[sort_idx]
event_labels = [event_labels[i] for i in sort_idx]
# Create epochs
epochs = nk.epochs_create(signals, all_events, sampling_rate=1000,
epochs_start=-0.5, epochs_end=3.0,
event_labels=event_labels)
# Separate by type
type1_epochs = {k: v for k, v in epochs.items() if v['Label'][0] == 'type1'}
type2_epochs = {k: v for k, v in epochs.items() if v['Label'][0] == 'type2'}
```
### Quality Control and Artifact Rejection
```python
# Remove epochs with excessive noise or artifacts
clean_epochs = {}
for key, epoch in epochs.items():
# Example: reject if EDA amplitude too high (movement artifact)
if epoch['EDA_Phasic'].abs().max() < 5.0: # Threshold
# Example: reject if heart rate change too large (invalid)
if epoch['ECG_Rate'].max() - epoch['ECG_Rate'].min() < 50:
clean_epochs[key] = epoch
print(f"Kept {len(clean_epochs)}/{len(epochs)} epochs")
# Analyze clean epochs
results = nk.ecg_eventrelated(clean_epochs)
```
## Statistical Considerations
### Sample Size
- **ERP/averaging**: 20-30+ trials per condition minimum
- **Individual trial analysis**: Mixed-effects models handle variable trial counts
- **Group comparisons**: Pilot data for power analysis
### Time Window Selection
- **A priori hypotheses**: Pre-register time windows based on literature
- **Exploratory**: Use full epoch, correct for multiple comparisons
- **Avoid**: Selecting windows based on observed data (circular)
### Baseline Period
- Should be free of anticipatory effects
- Sufficient duration for stable estimate (500-1000 ms typical)
- Shorter for fast dynamics (e.g., startle: 100 ms sufficient)
### Condition Comparison
- Repeated measures ANOVA for within-subject designs
- Mixed-effects models for unbalanced data
- Permutation tests for non-parametric comparisons
- Correct for multiple comparisons (time points/signals)
## Common Applications
**Cognitive psychology:**
- P300 ERP analysis
- Error-related negativity (ERN)
- Attentional blink
- Working memory load effects
**Affective neuroscience:**
- Emotional picture viewing (EDA, HR, facial EMG)
- Fear conditioning (HR deceleration, SCR)
- Valence/arousal dimensions
**Clinical research:**
- Startle response (orbicularis oculi EMG)
- Orienting response (HR deceleration)
- Anticipation and prediction error
**Psychophysiology:**
- Cardiac defense response
- Orienting vs. defensive reflexes
- Respiratory changes during emotion
**Human-computer interaction:**
- User engagement during events
- Surprise/violation of expectation
- Cognitive load during task events
## References
- Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.). MIT press.
- Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 242-276). Oxford University Press.
- Boucsein, W. (2012). Electrodermal activity (2nd ed.). Springer.
- Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and clinical neurophysiology, 55(4), 468-484.