Files
gh-k-dense-ai-claude-scient…/skills/histolab/references/slide_management.md
2025-11-30 08:30:10 +08:00

173 lines
4.6 KiB
Markdown

# Slide Management
## Overview
The `Slide` class is the primary interface for working with whole slide images (WSI) in histolab. It provides methods to load, inspect, and process large histopathology images stored in various formats.
## Initialization
```python
from histolab.slide import Slide
# Initialize a slide with a WSI file and output directory
slide = Slide(processed_path="path/to/processed/output",
slide_path="path/to/slide.svs")
```
**Parameters:**
- `slide_path`: Path to the whole slide image file (supports multiple formats: SVS, TIFF, NDPI, etc.)
- `processed_path`: Directory where processed outputs (tiles, thumbnails, etc.) will be saved
## Loading Sample Data
Histolab provides built-in sample datasets from TCGA for testing and demonstration:
```python
from histolab.data import prostate_tissue, ovarian_tissue, breast_tissue, heart_tissue, kidney_tissue
# Load prostate tissue sample
prostate_svs, prostate_path = prostate_tissue()
slide = Slide(prostate_path, processed_path="output/")
```
Available sample datasets:
- `prostate_tissue()`: Prostate tissue sample
- `ovarian_tissue()`: Ovarian tissue sample
- `breast_tissue()`: Breast tissue sample
- `heart_tissue()`: Heart tissue sample
- `kidney_tissue()`: Kidney tissue sample
## Key Properties
### Slide Dimensions
```python
# Get slide dimensions at level 0 (highest resolution)
width, height = slide.dimensions
# Get dimensions at specific pyramid level
level_dimensions = slide.level_dimensions
# Returns tuple of (width, height) for each level
```
### Magnification Information
```python
# Get base magnification (e.g., 40x, 20x)
base_mag = slide.base_mpp # Microns per pixel at level 0
# Get all available levels
num_levels = slide.levels # Number of pyramid levels
```
### Slide Properties
```python
# Access OpenSlide properties dictionary
properties = slide.properties
# Common properties include:
# - slide.properties['openslide.objective-power']: Objective power
# - slide.properties['openslide.mpp-x']: Microns per pixel in X
# - slide.properties['openslide.mpp-y']: Microns per pixel in Y
# - slide.properties['openslide.vendor']: Scanner vendor
```
## Thumbnail Generation
```python
# Get thumbnail at specific size
thumbnail = slide.thumbnail
# Save thumbnail to disk
slide.save_thumbnail() # Saves to processed_path
# Get scaled thumbnail
scaled_thumbnail = slide.scaled_image(scale_factor=32)
```
## Slide Visualization
```python
# Display slide thumbnail with matplotlib
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.imshow(slide.thumbnail)
plt.title(f"Slide: {slide.name}")
plt.axis('off')
plt.show()
```
## Extracting Regions
```python
# Extract region at specific coordinates and level
region = slide.extract_region(
location=(x, y), # Top-left coordinates at level 0
size=(width, height), # Region size
level=0 # Pyramid level
)
```
## Working with Pyramid Levels
WSI files use a pyramidal structure with multiple resolution levels:
- Level 0: Highest resolution (native scan resolution)
- Level 1+: Progressively lower resolutions for faster access
```python
# Check available levels
for level in range(slide.levels):
dims = slide.level_dimensions[level]
downsample = slide.level_downsamples[level]
print(f"Level {level}: {dims}, downsample: {downsample}x")
```
## Slide Name and Path
```python
# Get slide filename without extension
slide_name = slide.name
# Get full path to slide file
slide_path = slide.scaled_image
```
## Best Practices
1. **Always specify processed_path**: Organize outputs in dedicated directories
2. **Check dimensions before processing**: Large slides can exceed memory limits
3. **Use appropriate pyramid levels**: Extract tiles at levels matching your analysis resolution
4. **Preview with thumbnails**: Use thumbnails for quick visualization before heavy processing
5. **Monitor memory usage**: Level 0 operations on large slides require significant RAM
## Common Workflows
### Slide Inspection Workflow
```python
from histolab.slide import Slide
# Load slide
slide = Slide("slide.svs", processed_path="output/")
# Inspect properties
print(f"Dimensions: {slide.dimensions}")
print(f"Levels: {slide.levels}")
print(f"Magnification: {slide.properties.get('openslide.objective-power', 'N/A')}")
# Save thumbnail for review
slide.save_thumbnail()
```
### Multi-Slide Processing
```python
import os
from pathlib import Path
slide_dir = Path("slides/")
output_dir = Path("processed/")
for slide_path in slide_dir.glob("*.svs"):
slide = Slide(slide_path, processed_path=output_dir / slide_path.stem)
# Process each slide
print(f"Processing: {slide.name}")
```