Files
gh-k-dense-ai-claude-scient…/skills/geniml/references/bedspace.md
2025-11-30 08:30:10 +08:00

128 lines
3.8 KiB
Markdown

# BEDspace: Joint Region and Metadata Embeddings
## Overview
BEDspace applies the StarSpace model to genomic data, enabling simultaneous training of numerical embeddings for both region sets and their metadata labels in a shared low-dimensional space. This allows for rich queries across regions and metadata.
## When to Use
Use BEDspace when working with:
- Region sets with associated metadata (cell types, tissues, conditions)
- Search tasks requiring metadata-aware similarity
- Cross-modal queries (e.g., "find regions similar to label X")
- Joint analysis of genomic content and experimental conditions
## Workflow
BEDspace consists of four sequential operations:
### 1. Preprocess
Format genomic intervals and metadata for StarSpace training:
```bash
geniml bedspace preprocess \
--input /path/to/regions/ \
--metadata labels.csv \
--universe universe.bed \
--labels "cell_type,tissue" \
--output preprocessed.txt
```
**Required files:**
- **Input folder**: Directory containing BED files
- **Metadata CSV**: Must include `file_name` column matching BED filenames, plus metadata columns
- **Universe file**: Reference BED file for tokenization
- **Labels**: Comma-separated list of metadata columns to use
The preprocessing step adds `__label__` prefixes to metadata and converts regions to StarSpace-compatible format.
### 2. Train
Execute StarSpace model on preprocessed data:
```bash
geniml bedspace train \
--path-to-starspace /path/to/starspace \
--input preprocessed.txt \
--output model/ \
--dim 100 \
--epochs 50 \
--lr 0.05
```
**Key training parameters:**
- `--dim`: Embedding dimension (typical: 50-200)
- `--epochs`: Training epochs (typical: 20-100)
- `--lr`: Learning rate (typical: 0.01-0.1)
### 3. Distances
Compute distance metrics between region sets and metadata labels:
```bash
geniml bedspace distances \
--input model/ \
--metadata labels.csv \
--universe universe.bed \
--output distances.pkl
```
This step creates a distance matrix needed for similarity searches.
### 4. Search
Retrieve similar items across three scenarios:
**Region-to-Label (r2l)**: Query region set → retrieve similar metadata labels
```bash
geniml bedspace search -t r2l -d distances.pkl -q query_regions.bed -n 10
```
**Label-to-Region (l2r)**: Query metadata label → retrieve similar region sets
```bash
geniml bedspace search -t l2r -d distances.pkl -q "T_cell" -n 10
```
**Region-to-Region (r2r)**: Query region set → retrieve similar region sets
```bash
geniml bedspace search -t r2r -d distances.pkl -q query_regions.bed -n 10
```
The `-n` parameter controls the number of results returned.
## Python API
```python
from geniml.bedspace import BEDSpaceModel
# Load trained model
model = BEDSpaceModel.load('model/')
# Query similar items
results = model.search(
query="T_cell",
search_type="l2r",
top_k=10
)
```
## Best Practices
- **Metadata structure**: Ensure metadata CSV includes `file_name` column that exactly matches BED filenames (without path)
- **Label selection**: Choose informative metadata columns that capture biological variation of interest
- **Universe consistency**: Use the same universe file across preprocessing, distances, and any subsequent analyses
- **Validation**: Preprocess and check output format before investing in training
- **StarSpace installation**: Install StarSpace separately as it's an external dependency
## Output Interpretation
Search results return items ranked by similarity in the joint embedding space:
- **r2l**: Identifies metadata labels characterizing your query regions
- **l2r**: Finds region sets matching your metadata criteria
- **r2r**: Discovers region sets with similar genomic content
## Requirements
BEDspace requires StarSpace to be installed separately. Download from: https://github.com/facebookresearch/StarSpace