Files
gh-k-dense-ai-claude-scient…/skills/gene-database/references/common_workflows.md
2025-11-30 08:30:10 +08:00

429 lines
10 KiB
Markdown

# Common Gene Database Workflows
This document provides examples of common workflows and use cases for working with NCBI Gene database.
## Table of Contents
1. [Disease Gene Discovery](#disease-gene-discovery)
2. [Gene Annotation Pipeline](#gene-annotation-pipeline)
3. [Cross-Species Gene Comparison](#cross-species-gene-comparison)
4. [Pathway Analysis](#pathway-analysis)
5. [Variant Analysis](#variant-analysis)
6. [Publication Mining](#publication-mining)
---
## Disease Gene Discovery
### Use Case
Identify genes associated with a specific disease or phenotype.
### Workflow
1. **Search by disease name**
```bash
# Find genes associated with Alzheimer's disease
python scripts/query_gene.py --search "Alzheimer disease[disease]" --organism human --max-results 50
```
2. **Filter by chromosome location**
```bash
# Find genes on chromosome 17 associated with breast cancer
python scripts/query_gene.py --search "breast cancer[disease] AND 17[chromosome]" --organism human
```
3. **Retrieve detailed information**
```python
# Python example: Get gene details for disease-associated genes
import json
from scripts.query_gene import esearch, esummary
# Search for genes
query = "diabetes[disease] AND human[organism]"
gene_ids = esearch(query, retmax=100, api_key="YOUR_KEY")
# Get summaries
summaries = esummary(gene_ids, api_key="YOUR_KEY")
# Extract relevant information
for gene_id in gene_ids:
if gene_id in summaries['result']:
gene = summaries['result'][gene_id]
print(f"{gene['name']}: {gene['description']}")
```
### Expected Output
- List of genes with disease associations
- Gene symbols, descriptions, and chromosomal locations
- Related publications and clinical annotations
---
## Gene Annotation Pipeline
### Use Case
Annotate a list of gene identifiers with comprehensive metadata.
### Workflow
1. **Prepare gene list**
Create a file `genes.txt` with gene symbols (one per line):
```
BRCA1
TP53
EGFR
KRAS
```
2. **Batch lookup**
```bash
python scripts/batch_gene_lookup.py --file genes.txt --organism human --output annotations.json --api-key YOUR_KEY
```
3. **Parse results**
```python
import json
with open('annotations.json', 'r') as f:
genes = json.load(f)
for gene in genes:
if 'gene_id' in gene:
print(f"Symbol: {gene['symbol']}")
print(f"ID: {gene['gene_id']}")
print(f"Description: {gene['description']}")
print(f"Location: chr{gene['chromosome']}:{gene['map_location']}")
print()
```
4. **Enrich with sequence data**
```bash
# Get detailed data including sequences for specific genes
python scripts/fetch_gene_data.py --gene-id 672 --verbose > BRCA1_detailed.json
```
### Use Cases
- Creating gene annotation tables for publications
- Validating gene lists before analysis
- Building gene reference databases
- Quality control for genomic pipelines
---
## Cross-Species Gene Comparison
### Use Case
Find orthologs or compare the same gene across different species.
### Workflow
1. **Search for gene in multiple organisms**
```bash
# Find TP53 in human
python scripts/fetch_gene_data.py --symbol TP53 --taxon human
# Find TP53 in mouse
python scripts/fetch_gene_data.py --symbol TP53 --taxon mouse
# Find TP53 in zebrafish
python scripts/fetch_gene_data.py --symbol TP53 --taxon zebrafish
```
2. **Compare gene IDs across species**
```python
# Compare gene information across species
species = {
'human': '9606',
'mouse': '10090',
'rat': '10116'
}
gene_symbol = 'TP53'
for organism, taxon_id in species.items():
# Fetch gene data
# ... (use fetch_gene_by_symbol)
print(f"{organism}: {gene_data}")
```
3. **Find orthologs using ELink**
```bash
# Get HomoloGene links for a gene
curl "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=gene&db=homologene&id=7157&retmode=json"
```
### Applications
- Evolutionary studies
- Model organism research
- Comparative genomics
- Cross-species experimental design
---
## Pathway Analysis
### Use Case
Identify genes involved in specific biological pathways or processes.
### Workflow
1. **Search by Gene Ontology (GO) term**
```bash
# Find genes involved in apoptosis
python scripts/query_gene.py --search "GO:0006915[biological process]" --organism human --max-results 100
```
2. **Search by pathway name**
```bash
# Find genes in insulin signaling pathway
python scripts/query_gene.py --search "insulin signaling pathway[pathway]" --organism human
```
3. **Get pathway-related genes**
```python
# Example: Get all genes in a specific pathway
import urllib.request
import json
# Search for pathway genes
query = "MAPK signaling pathway[pathway] AND human[organism]"
url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&term={query}&retmode=json&retmax=200"
with urllib.request.urlopen(url) as response:
data = json.loads(response.read().decode())
gene_ids = data['esearchresult']['idlist']
print(f"Found {len(gene_ids)} genes in MAPK signaling pathway")
```
4. **Batch retrieve gene details**
```bash
# Get details for all pathway genes
python scripts/batch_gene_lookup.py --ids 5594,5595,5603,5604 --output mapk_genes.json
```
### Applications
- Pathway enrichment analysis
- Gene set analysis
- Systems biology studies
- Drug target identification
---
## Variant Analysis
### Use Case
Find genes with clinically relevant variants or disease-associated mutations.
### Workflow
1. **Search for genes with clinical variants**
```bash
# Find genes with pathogenic variants
python scripts/query_gene.py --search "pathogenic[clinical significance]" --organism human --max-results 50
```
2. **Link to ClinVar database**
```bash
# Get ClinVar records for a gene
curl "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=gene&db=clinvar&id=672&retmode=json"
```
3. **Search for pharmacogenomic genes**
```bash
# Find genes associated with drug response
python scripts/query_gene.py --search "pharmacogenomic[property]" --organism human
```
4. **Get variant summary data**
```python
# Example: Get genes with known variants
from scripts.query_gene import esearch, efetch
# Search for genes with variants
gene_ids = esearch("has variants[filter] AND human[organism]", retmax=100)
# Fetch detailed records
for gene_id in gene_ids[:10]: # First 10
data = efetch([gene_id], retmode='xml')
# Parse XML for variant information
print(f"Gene {gene_id} variant data...")
```
### Applications
- Clinical genetics
- Precision medicine
- Pharmacogenomics
- Genetic counseling
---
## Publication Mining
### Use Case
Find genes mentioned in recent publications or link genes to literature.
### Workflow
1. **Search genes mentioned in specific publications**
```bash
# Find genes mentioned in papers about CRISPR
python scripts/query_gene.py --search "CRISPR[text word]" --organism human --max-results 100
```
2. **Get PubMed articles for a gene**
```bash
# Get all publications for BRCA1
curl "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=gene&db=pubmed&id=672&retmode=json"
```
3. **Search by author or journal**
```bash
# Find genes studied by specific research group
python scripts/query_gene.py --search "Smith J[author] AND 2024[pdat]" --organism human
```
4. **Extract gene-publication relationships**
```python
# Example: Build gene-publication network
from scripts.query_gene import esearch, esummary
import urllib.request
import json
# Get gene
gene_id = '672'
# Get publications for gene
url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=gene&db=pubmed&id={gene_id}&retmode=json"
with urllib.request.urlopen(url) as response:
data = json.loads(response.read().decode())
# Extract PMIDs
pmids = []
for linkset in data.get('linksets', []):
for linksetdb in linkset.get('linksetdbs', []):
pmids.extend(linksetdb.get('links', []))
print(f"Gene {gene_id} has {len(pmids)} publications")
```
### Applications
- Literature reviews
- Grant writing
- Knowledge base construction
- Trend analysis in genomics research
---
## Advanced Patterns
### Combining Multiple Searches
```python
# Example: Find genes at intersection of multiple criteria
def find_genes_multi_criteria(organism='human'):
# Criteria 1: Disease association
disease_genes = set(esearch("diabetes[disease] AND human[organism]"))
# Criteria 2: Chromosome location
chr_genes = set(esearch("11[chromosome] AND human[organism]"))
# Criteria 3: Gene type
coding_genes = set(esearch("protein coding[gene type] AND human[organism]"))
# Intersection
candidates = disease_genes & chr_genes & coding_genes
return list(candidates)
```
### Rate-Limited Batch Processing
```python
import time
def process_genes_with_rate_limit(gene_ids, batch_size=200, delay=0.1):
results = []
for i in range(0, len(gene_ids), batch_size):
batch = gene_ids[i:i + batch_size]
# Process batch
batch_results = esummary(batch)
results.append(batch_results)
# Rate limit
time.sleep(delay)
return results
```
### Error Handling and Retry
```python
import time
def robust_gene_fetch(gene_id, max_retries=3):
for attempt in range(max_retries):
try:
data = fetch_gene_by_id(gene_id)
return data
except Exception as e:
if attempt < max_retries - 1:
wait = 2 ** attempt # Exponential backoff
time.sleep(wait)
else:
print(f"Failed to fetch gene {gene_id}: {e}")
return None
```
---
## Tips and Best Practices
1. **Start Specific, Then Broaden**: Begin with precise queries and expand if needed
2. **Use Organism Filters**: Always specify organism for gene symbol searches
3. **Validate Results**: Check gene IDs and symbols for accuracy
4. **Cache Frequently Used Data**: Store common queries locally
5. **Monitor Rate Limits**: Use API keys and implement delays
6. **Combine APIs**: Use E-utilities for search, Datasets API for detailed data
7. **Handle Ambiguity**: Gene symbols may refer to different genes in different species
8. **Check Data Currency**: Gene annotations are updated regularly
9. **Use Batch Operations**: Process multiple genes together when possible
10. **Document Your Queries**: Keep records of search terms and parameters