Files
gh-k-dense-ai-claude-scient…/skills/fda-database/SKILL.md
2025-11-30 08:30:10 +08:00

513 lines
14 KiB
Markdown

---
name: fda-database
description: "Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research."
---
# FDA Database Access
## Overview
Access comprehensive FDA regulatory data through openFDA, the FDA's initiative to provide open APIs for public datasets. Query information about drugs, medical devices, foods, animal/veterinary products, and substances using Python with standardized interfaces.
**Key capabilities:**
- Query adverse events for drugs, devices, foods, and veterinary products
- Access product labeling, approvals, and regulatory submissions
- Monitor recalls and enforcement actions
- Look up National Drug Codes (NDC) and substance identifiers (UNII)
- Analyze device classifications and clearances (510k, PMA)
- Track drug shortages and supply issues
- Research chemical structures and substance relationships
## When to Use This Skill
This skill should be used when working with:
- **Drug research**: Safety profiles, adverse events, labeling, approvals, shortages
- **Medical device surveillance**: Adverse events, recalls, 510(k) clearances, PMA approvals
- **Food safety**: Recalls, allergen tracking, adverse events, dietary supplements
- **Veterinary medicine**: Animal drug adverse events by species and breed
- **Chemical/substance data**: UNII lookup, CAS number mapping, molecular structures
- **Regulatory analysis**: Approval pathways, enforcement actions, compliance tracking
- **Pharmacovigilance**: Post-market surveillance, safety signal detection
- **Scientific research**: Drug interactions, comparative safety, epidemiological studies
## Quick Start
### 1. Basic Setup
```python
from scripts.fda_query import FDAQuery
# Initialize (API key optional but recommended)
fda = FDAQuery(api_key="YOUR_API_KEY")
# Query drug adverse events
events = fda.query_drug_events("aspirin", limit=100)
# Get drug labeling
label = fda.query_drug_label("Lipitor", brand=True)
# Search device recalls
recalls = fda.query("device", "enforcement",
search="classification:Class+I",
limit=50)
```
### 2. API Key Setup
While the API works without a key, registering provides higher rate limits:
- **Without key**: 240 requests/min, 1,000/day
- **With key**: 240 requests/min, 120,000/day
Register at: https://open.fda.gov/apis/authentication/
Set as environment variable:
```bash
export FDA_API_KEY="your_key_here"
```
### 3. Running Examples
```bash
# Run comprehensive examples
python scripts/fda_examples.py
# This demonstrates:
# - Drug safety profiles
# - Device surveillance
# - Food recall monitoring
# - Substance lookup
# - Comparative drug analysis
# - Veterinary drug analysis
```
## FDA Database Categories
### Drugs
Access 6 drug-related endpoints covering the full drug lifecycle from approval to post-market surveillance.
**Endpoints:**
1. **Adverse Events** - Reports of side effects, errors, and therapeutic failures
2. **Product Labeling** - Prescribing information, warnings, indications
3. **NDC Directory** - National Drug Code product information
4. **Enforcement Reports** - Drug recalls and safety actions
5. **Drugs@FDA** - Historical approval data since 1939
6. **Drug Shortages** - Current and resolved supply issues
**Common use cases:**
```python
# Safety signal detection
fda.count_by_field("drug", "event",
search="patient.drug.medicinalproduct:metformin",
field="patient.reaction.reactionmeddrapt")
# Get prescribing information
label = fda.query_drug_label("Keytruda", brand=True)
# Check for recalls
recalls = fda.query_drug_recalls(drug_name="metformin")
# Monitor shortages
shortages = fda.query("drug", "drugshortages",
search="status:Currently+in+Shortage")
```
**Reference:** See `references/drugs.md` for detailed documentation
### Devices
Access 9 device-related endpoints covering medical device safety, approvals, and registrations.
**Endpoints:**
1. **Adverse Events** - Device malfunctions, injuries, deaths
2. **510(k) Clearances** - Premarket notifications
3. **Classification** - Device categories and risk classes
4. **Enforcement Reports** - Device recalls
5. **Recalls** - Detailed recall information
6. **PMA** - Premarket approval data for Class III devices
7. **Registrations & Listings** - Manufacturing facility data
8. **UDI** - Unique Device Identification database
9. **COVID-19 Serology** - Antibody test performance data
**Common use cases:**
```python
# Monitor device safety
events = fda.query_device_events("pacemaker", limit=100)
# Look up device classification
classification = fda.query_device_classification("DQY")
# Find 510(k) clearances
clearances = fda.query_device_510k(applicant="Medtronic")
# Search by UDI
device_info = fda.query("device", "udi",
search="identifiers.id:00884838003019")
```
**Reference:** See `references/devices.md` for detailed documentation
### Foods
Access 2 food-related endpoints for safety monitoring and recalls.
**Endpoints:**
1. **Adverse Events** - Food, dietary supplement, and cosmetic events
2. **Enforcement Reports** - Food product recalls
**Common use cases:**
```python
# Monitor allergen recalls
recalls = fda.query_food_recalls(reason="undeclared peanut")
# Track dietary supplement events
events = fda.query_food_events(
industry="Dietary Supplements")
# Find contamination recalls
listeria = fda.query_food_recalls(
reason="listeria",
classification="I")
```
**Reference:** See `references/foods.md` for detailed documentation
### Animal & Veterinary
Access veterinary drug adverse event data with species-specific information.
**Endpoint:**
1. **Adverse Events** - Animal drug side effects by species, breed, and product
**Common use cases:**
```python
# Species-specific events
dog_events = fda.query_animal_events(
species="Dog",
drug_name="flea collar")
# Breed predisposition analysis
breed_query = fda.query("animalandveterinary", "event",
search="reaction.veddra_term_name:*seizure*+AND+"
"animal.breed.breed_component:*Labrador*")
```
**Reference:** See `references/animal_veterinary.md` for detailed documentation
### Substances & Other
Access molecular-level substance data with UNII codes, chemical structures, and relationships.
**Endpoints:**
1. **Substance Data** - UNII, CAS, chemical structures, relationships
2. **NSDE** - Historical substance data (legacy)
**Common use cases:**
```python
# UNII to CAS mapping
substance = fda.query_substance_by_unii("R16CO5Y76E")
# Search by name
results = fda.query_substance_by_name("acetaminophen")
# Get chemical structure
structure = fda.query("other", "substance",
search="names.name:ibuprofen+AND+substanceClass:chemical")
```
**Reference:** See `references/other.md` for detailed documentation
## Common Query Patterns
### Pattern 1: Safety Profile Analysis
Create comprehensive safety profiles combining multiple data sources:
```python
def drug_safety_profile(fda, drug_name):
"""Generate complete safety profile."""
# 1. Total adverse events
events = fda.query_drug_events(drug_name, limit=1)
total = events["meta"]["results"]["total"]
# 2. Most common reactions
reactions = fda.count_by_field(
"drug", "event",
search=f"patient.drug.medicinalproduct:*{drug_name}*",
field="patient.reaction.reactionmeddrapt",
exact=True
)
# 3. Serious events
serious = fda.query("drug", "event",
search=f"patient.drug.medicinalproduct:*{drug_name}*+AND+serious:1",
limit=1)
# 4. Recent recalls
recalls = fda.query_drug_recalls(drug_name=drug_name)
return {
"total_events": total,
"top_reactions": reactions["results"][:10],
"serious_events": serious["meta"]["results"]["total"],
"recalls": recalls["results"]
}
```
### Pattern 2: Temporal Trend Analysis
Analyze trends over time using date ranges:
```python
from datetime import datetime, timedelta
def get_monthly_trends(fda, drug_name, months=12):
"""Get monthly adverse event trends."""
trends = []
for i in range(months):
end = datetime.now() - timedelta(days=30*i)
start = end - timedelta(days=30)
date_range = f"[{start.strftime('%Y%m%d')}+TO+{end.strftime('%Y%m%d')}]"
search = f"patient.drug.medicinalproduct:*{drug_name}*+AND+receivedate:{date_range}"
result = fda.query("drug", "event", search=search, limit=1)
count = result["meta"]["results"]["total"] if "meta" in result else 0
trends.append({
"month": start.strftime("%Y-%m"),
"events": count
})
return trends
```
### Pattern 3: Comparative Analysis
Compare multiple products side-by-side:
```python
def compare_drugs(fda, drug_list):
"""Compare safety profiles of multiple drugs."""
comparison = {}
for drug in drug_list:
# Total events
events = fda.query_drug_events(drug, limit=1)
total = events["meta"]["results"]["total"] if "meta" in events else 0
# Serious events
serious = fda.query("drug", "event",
search=f"patient.drug.medicinalproduct:*{drug}*+AND+serious:1",
limit=1)
serious_count = serious["meta"]["results"]["total"] if "meta" in serious else 0
comparison[drug] = {
"total_events": total,
"serious_events": serious_count,
"serious_rate": (serious_count/total*100) if total > 0 else 0
}
return comparison
```
### Pattern 4: Cross-Database Lookup
Link data across multiple endpoints:
```python
def comprehensive_device_lookup(fda, device_name):
"""Look up device across all relevant databases."""
return {
"adverse_events": fda.query_device_events(device_name, limit=10),
"510k_clearances": fda.query_device_510k(device_name=device_name),
"recalls": fda.query("device", "enforcement",
search=f"product_description:*{device_name}*"),
"udi_info": fda.query("device", "udi",
search=f"brand_name:*{device_name}*")
}
```
## Working with Results
### Response Structure
All API responses follow this structure:
```python
{
"meta": {
"disclaimer": "...",
"results": {
"skip": 0,
"limit": 100,
"total": 15234
}
},
"results": [
# Array of result objects
]
}
```
### Error Handling
Always handle potential errors:
```python
result = fda.query_drug_events("aspirin", limit=10)
if "error" in result:
print(f"Error: {result['error']}")
elif "results" not in result or len(result["results"]) == 0:
print("No results found")
else:
# Process results
for event in result["results"]:
# Handle event data
pass
```
### Pagination
For large result sets, use pagination:
```python
# Automatic pagination
all_results = fda.query_all(
"drug", "event",
search="patient.drug.medicinalproduct:aspirin",
max_results=5000
)
# Manual pagination
for skip in range(0, 1000, 100):
batch = fda.query("drug", "event",
search="...",
limit=100,
skip=skip)
# Process batch
```
## Best Practices
### 1. Use Specific Searches
**DO:**
```python
# Specific field search
search="patient.drug.medicinalproduct:aspirin"
```
**DON'T:**
```python
# Overly broad wildcard
search="*aspirin*"
```
### 2. Implement Rate Limiting
The `FDAQuery` class handles rate limiting automatically, but be aware of limits:
- 240 requests per minute
- 120,000 requests per day (with API key)
### 3. Cache Frequently Accessed Data
The `FDAQuery` class includes built-in caching (enabled by default):
```python
# Caching is automatic
fda = FDAQuery(api_key=api_key, use_cache=True, cache_ttl=3600)
```
### 4. Use Exact Matching for Counting
When counting/aggregating, use `.exact` suffix:
```python
# Count exact phrases
fda.count_by_field("drug", "event",
search="...",
field="patient.reaction.reactionmeddrapt",
exact=True) # Adds .exact automatically
```
### 5. Validate Input Data
Clean and validate search terms:
```python
def clean_drug_name(name):
"""Clean drug name for query."""
return name.strip().replace('"', '\\"')
drug_name = clean_drug_name(user_input)
```
## API Reference
For detailed information about:
- **Authentication and rate limits** → See `references/api_basics.md`
- **Drug databases** → See `references/drugs.md`
- **Device databases** → See `references/devices.md`
- **Food databases** → See `references/foods.md`
- **Animal/veterinary databases** → See `references/animal_veterinary.md`
- **Substance databases** → See `references/other.md`
## Scripts
### `scripts/fda_query.py`
Main query module with `FDAQuery` class providing:
- Unified interface to all FDA endpoints
- Automatic rate limiting and caching
- Error handling and retry logic
- Common query patterns
### `scripts/fda_examples.py`
Comprehensive examples demonstrating:
- Drug safety profile analysis
- Device surveillance monitoring
- Food recall tracking
- Substance lookup
- Comparative drug analysis
- Veterinary drug analysis
Run examples:
```bash
python scripts/fda_examples.py
```
## Additional Resources
- **openFDA Homepage**: https://open.fda.gov/
- **API Documentation**: https://open.fda.gov/apis/
- **Interactive API Explorer**: https://open.fda.gov/apis/try-the-api/
- **GitHub Repository**: https://github.com/FDA/openfda
- **Terms of Service**: https://open.fda.gov/terms/
## Support and Troubleshooting
### Common Issues
**Issue**: Rate limit exceeded
- **Solution**: Use API key, implement delays, or reduce request frequency
**Issue**: No results found
- **Solution**: Try broader search terms, check spelling, use wildcards
**Issue**: Invalid query syntax
- **Solution**: Review query syntax in `references/api_basics.md`
**Issue**: Missing fields in results
- **Solution**: Not all records contain all fields; always check field existence
### Getting Help
- **GitHub Issues**: https://github.com/FDA/openfda/issues
- **Email**: open-fda@fda.hhs.gov