Files
gh-k-dense-ai-claude-scient…/skills/etetoolkit/SKILL.md
2025-11-30 08:30:10 +08:00

618 lines
17 KiB
Markdown

---
name: etetoolkit
description: "Phylogenetic tree toolkit (ETE). Tree manipulation (Newick/NHX), evolutionary event detection, orthology/paralogy, NCBI taxonomy, visualization (PDF/SVG), for phylogenomics."
---
# ETE Toolkit Skill
## Overview
ETE (Environment for Tree Exploration) is a toolkit for phylogenetic and hierarchical tree analysis. Manipulate trees, analyze evolutionary events, visualize results, and integrate with biological databases for phylogenomic research and clustering analysis.
## Core Capabilities
### 1. Tree Manipulation and Analysis
Load, manipulate, and analyze hierarchical tree structures with support for:
- **Tree I/O**: Read and write Newick, NHX, PhyloXML, and NeXML formats
- **Tree traversal**: Navigate trees using preorder, postorder, or levelorder strategies
- **Topology modification**: Prune, root, collapse nodes, resolve polytomies
- **Distance calculations**: Compute branch lengths and topological distances between nodes
- **Tree comparison**: Calculate Robinson-Foulds distances and identify topological differences
**Common patterns:**
```python
from ete3 import Tree
# Load tree from file
tree = Tree("tree.nw", format=1)
# Basic statistics
print(f"Leaves: {len(tree)}")
print(f"Total nodes: {len(list(tree.traverse()))}")
# Prune to taxa of interest
taxa_to_keep = ["species1", "species2", "species3"]
tree.prune(taxa_to_keep, preserve_branch_length=True)
# Midpoint root
midpoint = tree.get_midpoint_outgroup()
tree.set_outgroup(midpoint)
# Save modified tree
tree.write(outfile="rooted_tree.nw")
```
Use `scripts/tree_operations.py` for command-line tree manipulation:
```bash
# Display tree statistics
python scripts/tree_operations.py stats tree.nw
# Convert format
python scripts/tree_operations.py convert tree.nw output.nw --in-format 0 --out-format 1
# Reroot tree
python scripts/tree_operations.py reroot tree.nw rooted.nw --midpoint
# Prune to specific taxa
python scripts/tree_operations.py prune tree.nw pruned.nw --keep-taxa "sp1,sp2,sp3"
# Show ASCII visualization
python scripts/tree_operations.py ascii tree.nw
```
### 2. Phylogenetic Analysis
Analyze gene trees with evolutionary event detection:
- **Sequence alignment integration**: Link trees to multiple sequence alignments (FASTA, Phylip)
- **Species naming**: Automatic or custom species extraction from gene names
- **Evolutionary events**: Detect duplication and speciation events using Species Overlap or tree reconciliation
- **Orthology detection**: Identify orthologs and paralogs based on evolutionary events
- **Gene family analysis**: Split trees by duplications, collapse lineage-specific expansions
**Workflow for gene tree analysis:**
```python
from ete3 import PhyloTree
# Load gene tree with alignment
tree = PhyloTree("gene_tree.nw", alignment="alignment.fasta")
# Set species naming function
def get_species(gene_name):
return gene_name.split("_")[0]
tree.set_species_naming_function(get_species)
# Detect evolutionary events
events = tree.get_descendant_evol_events()
# Analyze events
for node in tree.traverse():
if hasattr(node, "evoltype"):
if node.evoltype == "D":
print(f"Duplication at {node.name}")
elif node.evoltype == "S":
print(f"Speciation at {node.name}")
# Extract ortholog groups
ortho_groups = tree.get_speciation_trees()
for i, ortho_tree in enumerate(ortho_groups):
ortho_tree.write(outfile=f"ortholog_group_{i}.nw")
```
**Finding orthologs and paralogs:**
```python
# Find orthologs to query gene
query = tree & "species1_gene1"
orthologs = []
paralogs = []
for event in events:
if query in event.in_seqs:
if event.etype == "S":
orthologs.extend([s for s in event.out_seqs if s != query])
elif event.etype == "D":
paralogs.extend([s for s in event.out_seqs if s != query])
```
### 3. NCBI Taxonomy Integration
Integrate taxonomic information from NCBI Taxonomy database:
- **Database access**: Automatic download and local caching of NCBI taxonomy (~300MB)
- **Taxid/name translation**: Convert between taxonomic IDs and scientific names
- **Lineage retrieval**: Get complete evolutionary lineages
- **Taxonomy trees**: Build species trees connecting specified taxa
- **Tree annotation**: Automatically annotate trees with taxonomic information
**Building taxonomy-based trees:**
```python
from ete3 import NCBITaxa
ncbi = NCBITaxa()
# Build tree from species names
species = ["Homo sapiens", "Pan troglodytes", "Mus musculus"]
name2taxid = ncbi.get_name_translator(species)
taxids = [name2taxid[sp][0] for sp in species]
# Get minimal tree connecting taxa
tree = ncbi.get_topology(taxids)
# Annotate nodes with taxonomy info
for node in tree.traverse():
if hasattr(node, "sci_name"):
print(f"{node.sci_name} - Rank: {node.rank} - TaxID: {node.taxid}")
```
**Annotating existing trees:**
```python
# Get taxonomy info for tree leaves
for leaf in tree:
species = extract_species_from_name(leaf.name)
taxid = ncbi.get_name_translator([species])[species][0]
# Get lineage
lineage = ncbi.get_lineage(taxid)
ranks = ncbi.get_rank(lineage)
names = ncbi.get_taxid_translator(lineage)
# Add to node
leaf.add_feature("taxid", taxid)
leaf.add_feature("lineage", [names[t] for t in lineage])
```
### 4. Tree Visualization
Create publication-quality tree visualizations:
- **Output formats**: PNG (raster), PDF, and SVG (vector) for publications
- **Layout modes**: Rectangular and circular tree layouts
- **Interactive GUI**: Explore trees interactively with zoom, pan, and search
- **Custom styling**: NodeStyle for node appearance (colors, shapes, sizes)
- **Faces**: Add graphical elements (text, images, charts, heatmaps) to nodes
- **Layout functions**: Dynamic styling based on node properties
**Basic visualization workflow:**
```python
from ete3 import Tree, TreeStyle, NodeStyle
tree = Tree("tree.nw")
# Configure tree style
ts = TreeStyle()
ts.show_leaf_name = True
ts.show_branch_support = True
ts.scale = 50 # pixels per branch length unit
# Style nodes
for node in tree.traverse():
nstyle = NodeStyle()
if node.is_leaf():
nstyle["fgcolor"] = "blue"
nstyle["size"] = 8
else:
# Color by support
if node.support > 0.9:
nstyle["fgcolor"] = "darkgreen"
else:
nstyle["fgcolor"] = "red"
nstyle["size"] = 5
node.set_style(nstyle)
# Render to file
tree.render("tree.pdf", tree_style=ts)
tree.render("tree.png", w=800, h=600, units="px", dpi=300)
```
Use `scripts/quick_visualize.py` for rapid visualization:
```bash
# Basic visualization
python scripts/quick_visualize.py tree.nw output.pdf
# Circular layout with custom styling
python scripts/quick_visualize.py tree.nw output.pdf --mode c --color-by-support
# High-resolution PNG
python scripts/quick_visualize.py tree.nw output.png --width 1200 --height 800 --units px --dpi 300
# Custom title and styling
python scripts/quick_visualize.py tree.nw output.pdf --title "Species Phylogeny" --show-support
```
**Advanced visualization with faces:**
```python
from ete3 import Tree, TreeStyle, TextFace, CircleFace
tree = Tree("tree.nw")
# Add features to nodes
for leaf in tree:
leaf.add_feature("habitat", "marine" if "fish" in leaf.name else "land")
# Layout function
def layout(node):
if node.is_leaf():
# Add colored circle
color = "blue" if node.habitat == "marine" else "green"
circle = CircleFace(radius=5, color=color)
node.add_face(circle, column=0, position="aligned")
# Add label
label = TextFace(node.name, fsize=10)
node.add_face(label, column=1, position="aligned")
ts = TreeStyle()
ts.layout_fn = layout
ts.show_leaf_name = False
tree.render("annotated_tree.pdf", tree_style=ts)
```
### 5. Clustering Analysis
Analyze hierarchical clustering results with data integration:
- **ClusterTree**: Specialized class for clustering dendrograms
- **Data matrix linking**: Connect tree leaves to numerical profiles
- **Cluster metrics**: Silhouette coefficient, Dunn index, inter/intra-cluster distances
- **Validation**: Test cluster quality with different distance metrics
- **Heatmap visualization**: Display data matrices alongside trees
**Clustering workflow:**
```python
from ete3 import ClusterTree
# Load tree with data matrix
matrix = """#Names\tSample1\tSample2\tSample3
Gene1\t1.5\t2.3\t0.8
Gene2\t0.9\t1.1\t1.8
Gene3\t2.1\t2.5\t0.5"""
tree = ClusterTree("((Gene1,Gene2),Gene3);", text_array=matrix)
# Evaluate cluster quality
for node in tree.traverse():
if not node.is_leaf():
silhouette = node.get_silhouette()
dunn = node.get_dunn()
print(f"Cluster: {node.name}")
print(f" Silhouette: {silhouette:.3f}")
print(f" Dunn index: {dunn:.3f}")
# Visualize with heatmap
tree.show("heatmap")
```
### 6. Tree Comparison
Quantify topological differences between trees:
- **Robinson-Foulds distance**: Standard metric for tree comparison
- **Normalized RF**: Scale-invariant distance (0.0 to 1.0)
- **Partition analysis**: Identify unique and shared bipartitions
- **Consensus trees**: Analyze support across multiple trees
- **Batch comparison**: Compare multiple trees pairwise
**Compare two trees:**
```python
from ete3 import Tree
tree1 = Tree("tree1.nw")
tree2 = Tree("tree2.nw")
# Calculate RF distance
rf, max_rf, common_leaves, parts_t1, parts_t2 = tree1.robinson_foulds(tree2)
print(f"RF distance: {rf}/{max_rf}")
print(f"Normalized RF: {rf/max_rf:.3f}")
print(f"Common leaves: {len(common_leaves)}")
# Find unique partitions
unique_t1 = parts_t1 - parts_t2
unique_t2 = parts_t2 - parts_t1
print(f"Unique to tree1: {len(unique_t1)}")
print(f"Unique to tree2: {len(unique_t2)}")
```
**Compare multiple trees:**
```python
import numpy as np
trees = [Tree(f"tree{i}.nw") for i in range(4)]
# Create distance matrix
n = len(trees)
dist_matrix = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n):
rf, max_rf, _, _, _ = trees[i].robinson_foulds(trees[j])
norm_rf = rf / max_rf if max_rf > 0 else 0
dist_matrix[i, j] = norm_rf
dist_matrix[j, i] = norm_rf
```
## Installation and Setup
Install ETE toolkit:
```bash
# Basic installation
uv pip install ete3
# With external dependencies for rendering (optional but recommended)
# On macOS:
brew install qt@5
# On Ubuntu/Debian:
sudo apt-get install python3-pyqt5 python3-pyqt5.qtsvg
# For full features including GUI
uv pip install ete3[gui]
```
**First-time NCBI Taxonomy setup:**
The first time NCBITaxa is instantiated, it automatically downloads the NCBI taxonomy database (~300MB) to `~/.etetoolkit/taxa.sqlite`. This happens only once:
```python
from ete3 import NCBITaxa
ncbi = NCBITaxa() # Downloads database on first run
```
Update taxonomy database:
```python
ncbi.update_taxonomy_database() # Download latest NCBI data
```
## Common Use Cases
### Use Case 1: Phylogenomic Pipeline
Complete workflow from gene tree to ortholog identification:
```python
from ete3 import PhyloTree, NCBITaxa
# 1. Load gene tree with alignment
tree = PhyloTree("gene_tree.nw", alignment="alignment.fasta")
# 2. Configure species naming
tree.set_species_naming_function(lambda x: x.split("_")[0])
# 3. Detect evolutionary events
tree.get_descendant_evol_events()
# 4. Annotate with taxonomy
ncbi = NCBITaxa()
for leaf in tree:
if leaf.species in species_to_taxid:
taxid = species_to_taxid[leaf.species]
lineage = ncbi.get_lineage(taxid)
leaf.add_feature("lineage", lineage)
# 5. Extract ortholog groups
ortho_groups = tree.get_speciation_trees()
# 6. Save and visualize
for i, ortho in enumerate(ortho_groups):
ortho.write(outfile=f"ortho_{i}.nw")
```
### Use Case 2: Tree Preprocessing and Formatting
Batch process trees for analysis:
```bash
# Convert format
python scripts/tree_operations.py convert input.nw output.nw --in-format 0 --out-format 1
# Root at midpoint
python scripts/tree_operations.py reroot input.nw rooted.nw --midpoint
# Prune to focal taxa
python scripts/tree_operations.py prune rooted.nw pruned.nw --keep-taxa taxa_list.txt
# Get statistics
python scripts/tree_operations.py stats pruned.nw
```
### Use Case 3: Publication-Quality Figures
Create styled visualizations:
```python
from ete3 import Tree, TreeStyle, NodeStyle, TextFace
tree = Tree("tree.nw")
# Define clade colors
clade_colors = {
"Mammals": "red",
"Birds": "blue",
"Fish": "green"
}
def layout(node):
# Highlight clades
if node.is_leaf():
for clade, color in clade_colors.items():
if clade in node.name:
nstyle = NodeStyle()
nstyle["fgcolor"] = color
nstyle["size"] = 8
node.set_style(nstyle)
else:
# Add support values
if node.support > 0.95:
support = TextFace(f"{node.support:.2f}", fsize=8)
node.add_face(support, column=0, position="branch-top")
ts = TreeStyle()
ts.layout_fn = layout
ts.show_scale = True
# Render for publication
tree.render("figure.pdf", w=200, units="mm", tree_style=ts)
tree.render("figure.svg", tree_style=ts) # Editable vector
```
### Use Case 4: Automated Tree Analysis
Process multiple trees systematically:
```python
from ete3 import Tree
import os
input_dir = "trees"
output_dir = "processed"
for filename in os.listdir(input_dir):
if filename.endswith(".nw"):
tree = Tree(os.path.join(input_dir, filename))
# Standardize: midpoint root, resolve polytomies
midpoint = tree.get_midpoint_outgroup()
tree.set_outgroup(midpoint)
tree.resolve_polytomy(recursive=True)
# Filter low support branches
for node in tree.traverse():
if hasattr(node, 'support') and node.support < 0.5:
if not node.is_leaf() and not node.is_root():
node.delete()
# Save processed tree
output_file = os.path.join(output_dir, f"processed_{filename}")
tree.write(outfile=output_file)
```
## Reference Documentation
For comprehensive API documentation, code examples, and detailed guides, refer to the following resources in the `references/` directory:
- **`api_reference.md`**: Complete API documentation for all ETE classes and methods (Tree, PhyloTree, ClusterTree, NCBITaxa), including parameters, return types, and code examples
- **`workflows.md`**: Common workflow patterns organized by task (tree operations, phylogenetic analysis, tree comparison, taxonomy integration, clustering analysis)
- **`visualization.md`**: Comprehensive visualization guide covering TreeStyle, NodeStyle, Faces, layout functions, and advanced visualization techniques
Load these references when detailed information is needed:
```python
# To use API reference
# Read references/api_reference.md for complete method signatures and parameters
# To implement workflows
# Read references/workflows.md for step-by-step workflow examples
# To create visualizations
# Read references/visualization.md for styling and rendering options
```
## Troubleshooting
**Import errors:**
```bash
# If "ModuleNotFoundError: No module named 'ete3'"
uv pip install ete3
# For GUI and rendering issues
uv pip install ete3[gui]
```
**Rendering issues:**
If `tree.render()` or `tree.show()` fails with Qt-related errors, install system dependencies:
```bash
# macOS
brew install qt@5
# Ubuntu/Debian
sudo apt-get install python3-pyqt5 python3-pyqt5.qtsvg
```
**NCBI Taxonomy database:**
If database download fails or becomes corrupted:
```python
from ete3 import NCBITaxa
ncbi = NCBITaxa()
ncbi.update_taxonomy_database() # Redownload database
```
**Memory issues with large trees:**
For very large trees (>10,000 leaves), use iterators instead of list comprehensions:
```python
# Memory-efficient iteration
for leaf in tree.iter_leaves():
process(leaf)
# Instead of
for leaf in tree.get_leaves(): # Loads all into memory
process(leaf)
```
## Newick Format Reference
ETE supports multiple Newick format specifications (0-100):
- **Format 0**: Flexible with branch lengths (default)
- **Format 1**: With internal node names
- **Format 2**: With bootstrap/support values
- **Format 5**: Internal node names + branch lengths
- **Format 8**: All features (names, distances, support)
- **Format 9**: Leaf names only
- **Format 100**: Topology only
Specify format when reading/writing:
```python
tree = Tree("tree.nw", format=1)
tree.write(outfile="output.nw", format=5)
```
NHX (New Hampshire eXtended) format preserves custom features:
```python
tree.write(outfile="tree.nhx", features=["habitat", "temperature", "depth"])
```
## Best Practices
1. **Preserve branch lengths**: Use `preserve_branch_length=True` when pruning for phylogenetic analysis
2. **Cache content**: Use `get_cached_content()` for repeated access to node contents on large trees
3. **Use iterators**: Employ `iter_*` methods for memory-efficient processing of large trees
4. **Choose appropriate traversal**: Postorder for bottom-up analysis, preorder for top-down
5. **Validate monophyly**: Always check returned clade type (monophyletic/paraphyletic/polyphyletic)
6. **Vector formats for publication**: Use PDF or SVG for publication figures (scalable, editable)
7. **Interactive testing**: Use `tree.show()` to test visualizations before rendering to file
8. **PhyloTree for phylogenetics**: Use PhyloTree class for gene trees and evolutionary analysis
9. **Copy method selection**: "newick" for speed, "cpickle" for full fidelity, "deepcopy" for complex objects
10. **NCBI query caching**: Store NCBI taxonomy query results to avoid repeated database access