Files
gh-k-dense-ai-claude-scient…/skills/anndata/references/concatenation.md
2025-11-30 08:30:10 +08:00

397 lines
10 KiB
Markdown

# Concatenating AnnData Objects
Combine multiple AnnData objects along either observations or variables axis.
## Basic Concatenation
### Concatenate along observations (stack cells/samples)
```python
import anndata as ad
import numpy as np
# Create multiple AnnData objects
adata1 = ad.AnnData(X=np.random.rand(100, 50))
adata2 = ad.AnnData(X=np.random.rand(150, 50))
adata3 = ad.AnnData(X=np.random.rand(200, 50))
# Concatenate along observations (axis=0, default)
adata_combined = ad.concat([adata1, adata2, adata3], axis=0)
print(adata_combined.shape) # (450, 50)
```
### Concatenate along variables (stack genes/features)
```python
# Create objects with same observations, different variables
adata1 = ad.AnnData(X=np.random.rand(100, 50))
adata2 = ad.AnnData(X=np.random.rand(100, 30))
adata3 = ad.AnnData(X=np.random.rand(100, 70))
# Concatenate along variables (axis=1)
adata_combined = ad.concat([adata1, adata2, adata3], axis=1)
print(adata_combined.shape) # (100, 150)
```
## Join Types
### Inner join (intersection)
Keep only variables/observations present in all objects.
```python
import pandas as pd
# Create objects with different variables
adata1 = ad.AnnData(
X=np.random.rand(100, 50),
var=pd.DataFrame(index=[f'Gene_{i}' for i in range(50)])
)
adata2 = ad.AnnData(
X=np.random.rand(150, 60),
var=pd.DataFrame(index=[f'Gene_{i}' for i in range(10, 70)])
)
# Inner join: only genes 10-49 are kept (overlap)
adata_inner = ad.concat([adata1, adata2], join='inner')
print(adata_inner.n_vars) # 40 genes (overlap)
```
### Outer join (union)
Keep all variables/observations, filling missing values.
```python
# Outer join: all genes are kept
adata_outer = ad.concat([adata1, adata2], join='outer')
print(adata_outer.n_vars) # 70 genes (union)
# Missing values are filled with appropriate defaults:
# - 0 for sparse matrices
# - NaN for dense matrices
```
### Fill values for outer joins
```python
# Specify fill value for missing data
adata_filled = ad.concat([adata1, adata2], join='outer', fill_value=0)
```
## Tracking Data Sources
### Add batch labels
```python
# Label which object each observation came from
adata_combined = ad.concat(
[adata1, adata2, adata3],
label='batch', # Column name for labels
keys=['batch1', 'batch2', 'batch3'] # Labels for each object
)
print(adata_combined.obs['batch'].value_counts())
# batch1 100
# batch2 150
# batch3 200
```
### Automatic batch labels
```python
# If keys not provided, uses integer indices
adata_combined = ad.concat(
[adata1, adata2, adata3],
label='dataset'
)
# dataset column contains: 0, 1, 2
```
## Merge Strategies
Control how metadata from different objects is combined using the `merge` parameter.
### merge=None (default for observations)
Exclude metadata on non-concatenation axis.
```python
# When concatenating observations, var metadata must match
adata1.var['gene_type'] = 'protein_coding'
adata2.var['gene_type'] = 'protein_coding'
# var is kept only if identical across all objects
adata_combined = ad.concat([adata1, adata2], merge=None)
```
### merge='same'
Keep metadata that is identical across all objects.
```python
adata1.var['chromosome'] = ['chr1'] * 25 + ['chr2'] * 25
adata2.var['chromosome'] = ['chr1'] * 25 + ['chr2'] * 25
adata1.var['type'] = 'protein_coding'
adata2.var['type'] = 'lncRNA' # Different
# 'chromosome' is kept (same), 'type' is excluded (different)
adata_combined = ad.concat([adata1, adata2], merge='same')
```
### merge='unique'
Keep metadata columns where each key has exactly one value.
```python
adata1.var['gene_id'] = [f'ENSG{i:05d}' for i in range(50)]
adata2.var['gene_id'] = [f'ENSG{i:05d}' for i in range(50)]
# gene_id is kept (unique values for each key)
adata_combined = ad.concat([adata1, adata2], merge='unique')
```
### merge='first'
Take values from the first object containing each key.
```python
adata1.var['description'] = ['Desc1'] * 50
adata2.var['description'] = ['Desc2'] * 50
# Uses descriptions from adata1
adata_combined = ad.concat([adata1, adata2], merge='first')
```
### merge='only'
Keep metadata that appears in only one object.
```python
adata1.var['adata1_specific'] = [1] * 50
adata2.var['adata2_specific'] = [2] * 50
# Both metadata columns are kept
adata_combined = ad.concat([adata1, adata2], merge='only')
```
## Handling Index Conflicts
### Make indices unique
```python
import pandas as pd
# Create objects with overlapping observation names
adata1 = ad.AnnData(
X=np.random.rand(3, 10),
obs=pd.DataFrame(index=['cell_1', 'cell_2', 'cell_3'])
)
adata2 = ad.AnnData(
X=np.random.rand(3, 10),
obs=pd.DataFrame(index=['cell_1', 'cell_2', 'cell_3'])
)
# Make indices unique by appending batch keys
adata_combined = ad.concat(
[adata1, adata2],
label='batch',
keys=['batch1', 'batch2'],
index_unique='_' # Separator for making indices unique
)
print(adata_combined.obs_names)
# ['cell_1_batch1', 'cell_2_batch1', 'cell_3_batch1',
# 'cell_1_batch2', 'cell_2_batch2', 'cell_3_batch2']
```
## Concatenating Layers
```python
# Objects with layers
adata1 = ad.AnnData(X=np.random.rand(100, 50))
adata1.layers['normalized'] = np.random.rand(100, 50)
adata1.layers['scaled'] = np.random.rand(100, 50)
adata2 = ad.AnnData(X=np.random.rand(150, 50))
adata2.layers['normalized'] = np.random.rand(150, 50)
adata2.layers['scaled'] = np.random.rand(150, 50)
# Layers are concatenated automatically if present in all objects
adata_combined = ad.concat([adata1, adata2])
print(adata_combined.layers.keys())
# dict_keys(['normalized', 'scaled'])
```
## Concatenating Multi-dimensional Annotations
### obsm/varm
```python
# Objects with embeddings
adata1.obsm['X_pca'] = np.random.rand(100, 50)
adata2.obsm['X_pca'] = np.random.rand(150, 50)
# obsm is concatenated along observation axis
adata_combined = ad.concat([adata1, adata2])
print(adata_combined.obsm['X_pca'].shape) # (250, 50)
```
### obsp/varp (pairwise annotations)
```python
from scipy.sparse import csr_matrix
# Pairwise matrices
adata1.obsp['connectivities'] = csr_matrix((100, 100))
adata2.obsp['connectivities'] = csr_matrix((150, 150))
# By default, obsp is NOT concatenated (set pairwise=True to include)
adata_combined = ad.concat([adata1, adata2])
# adata_combined.obsp is empty
# Include pairwise data (creates block diagonal matrix)
adata_combined = ad.concat([adata1, adata2], pairwise=True)
print(adata_combined.obsp['connectivities'].shape) # (250, 250)
```
## Concatenating uns (unstructured)
Unstructured metadata is merged recursively:
```python
adata1.uns['experiment'] = {'date': '2025-01-01', 'batch': 'A'}
adata2.uns['experiment'] = {'date': '2025-01-01', 'batch': 'B'}
# Using merge='unique' for uns
adata_combined = ad.concat([adata1, adata2], uns_merge='unique')
# 'date' is kept (same value), 'batch' might be excluded (different values)
```
## Lazy Concatenation (AnnCollection)
For very large datasets, use lazy concatenation that doesn't load all data:
```python
from anndata.experimental import AnnCollection
# Create collection from file paths (doesn't load data)
files = ['data1.h5ad', 'data2.h5ad', 'data3.h5ad']
collection = AnnCollection(
files,
join_obs='outer',
join_vars='inner',
label='dataset',
keys=['dataset1', 'dataset2', 'dataset3']
)
# Access data lazily
print(collection.n_obs) # Total observations
print(collection.obs.head()) # Metadata loaded, not X
# Convert to regular AnnData when needed (loads all data)
adata = collection.to_adata()
```
### Working with AnnCollection
```python
# Subset without loading data
subset = collection[collection.obs['cell_type'] == 'T cell']
# Iterate through datasets
for adata in collection:
print(adata.shape)
# Access specific dataset
first_dataset = collection[0]
```
## Concatenation on Disk
For datasets too large for memory, concatenate directly on disk:
```python
from anndata.experimental import concat_on_disk
# Concatenate without loading into memory
concat_on_disk(
['data1.h5ad', 'data2.h5ad', 'data3.h5ad'],
'combined.h5ad',
join='outer'
)
# Load result in backed mode
adata = ad.read_h5ad('combined.h5ad', backed='r')
```
## Common Concatenation Patterns
### Combine technical replicates
```python
# Multiple runs of the same samples
replicates = [adata_run1, adata_run2, adata_run3]
adata_combined = ad.concat(
replicates,
label='technical_replicate',
keys=['rep1', 'rep2', 'rep3'],
join='inner' # Keep only genes measured in all runs
)
```
### Combine batches from experiment
```python
# Different experimental batches
batches = [adata_batch1, adata_batch2, adata_batch3]
adata_combined = ad.concat(
batches,
label='batch',
keys=['batch1', 'batch2', 'batch3'],
join='outer' # Keep all genes
)
# Later: apply batch correction
```
### Merge multi-modal data
```python
# Different measurement modalities (e.g., RNA + protein)
adata_rna = ad.AnnData(X=np.random.rand(100, 2000))
adata_protein = ad.AnnData(X=np.random.rand(100, 50))
# Concatenate along variables to combine modalities
adata_multimodal = ad.concat([adata_rna, adata_protein], axis=1)
# Add labels to distinguish modalities
adata_multimodal.var['modality'] = ['RNA'] * 2000 + ['protein'] * 50
```
## Best Practices
1. **Check compatibility before concatenating**
```python
# Verify shapes are compatible
print([adata.n_vars for adata in [adata1, adata2, adata3]])
# Check variable names match
print([set(adata.var_names) for adata in [adata1, adata2, adata3]])
```
2. **Use appropriate join type**
- `inner`: When you need the same features across all samples (most stringent)
- `outer`: When you want to preserve all features (most inclusive)
3. **Track data sources**
Always use `label` and `keys` to track which observations came from which dataset.
4. **Consider memory usage**
- For large datasets, use `AnnCollection` or `concat_on_disk`
- Consider backed mode for the result
5. **Handle batch effects**
Concatenation combines data but doesn't correct for batch effects. Apply batch correction after concatenation:
```python
# After concatenation, apply batch correction
import scanpy as sc
sc.pp.combat(adata_combined, key='batch')
```
6. **Validate results**
```python
# Check dimensions
print(adata_combined.shape)
# Check batch distribution
print(adata_combined.obs['batch'].value_counts())
# Verify metadata integrity
print(adata_combined.var.head())
print(adata_combined.obs.head())
```