Files
gh-k-dense-ai-claude-scient…/skills/anndata/references/best_practices.md
2025-11-30 08:30:10 +08:00

526 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Best Practices
Guidelines for efficient and effective use of AnnData.
## Memory Management
### Use sparse matrices for sparse data
```python
import numpy as np
from scipy.sparse import csr_matrix
import anndata as ad
# Check data sparsity
data = np.random.rand(1000, 2000)
sparsity = 1 - np.count_nonzero(data) / data.size
print(f"Sparsity: {sparsity:.2%}")
# Convert to sparse if >50% zeros
if sparsity > 0.5:
adata = ad.AnnData(X=csr_matrix(data))
else:
adata = ad.AnnData(X=data)
# Benefits: 10-100x memory reduction for sparse genomics data
```
### Convert strings to categoricals
```python
# Inefficient: string columns use lots of memory
adata.obs['cell_type'] = ['Type_A', 'Type_B', 'Type_C'] * 333 + ['Type_A']
# Efficient: convert to categorical
adata.obs['cell_type'] = adata.obs['cell_type'].astype('category')
# Convert all string columns
adata.strings_to_categoricals()
# Benefits: 10-50x memory reduction for repeated strings
```
### Use backed mode for large datasets
```python
# Don't load entire dataset into memory
adata = ad.read_h5ad('large_dataset.h5ad', backed='r')
# Work with metadata
filtered = adata[adata.obs['quality'] > 0.8]
# Load only filtered subset
adata_subset = filtered.to_memory()
# Benefits: Work with datasets larger than RAM
```
## Views vs Copies
### Understanding views
```python
# Subsetting creates a view by default
subset = adata[0:100, :]
print(subset.is_view) # True
# Views don't copy data (memory efficient)
# But modifications can affect original
# Check if object is a view
if adata.is_view:
adata = adata.copy() # Make independent
```
### When to use views
```python
# Good: Read-only operations on subsets
mean_expr = adata[adata.obs['cell_type'] == 'T cell'].X.mean()
# Good: Temporary analysis
temp_subset = adata[:100, :]
result = analyze(temp_subset.X)
```
### When to use copies
```python
# Create independent copy for modifications
adata_filtered = adata[keep_cells, :].copy()
# Safe to modify without affecting original
adata_filtered.obs['new_column'] = values
# Always copy when:
# - Storing subset for later use
# - Modifying subset data
# - Passing to function that modifies data
```
## Data Storage Best Practices
### Choose the right format
**H5AD (HDF5) - Default choice**
```python
adata.write_h5ad('data.h5ad', compression='gzip')
```
- Fast random access
- Supports backed mode
- Good compression
- Best for: Most use cases
**Zarr - Cloud and parallel access**
```python
adata.write_zarr('data.zarr', chunks=(100, 100))
```
- Excellent for cloud storage (S3, GCS)
- Supports parallel I/O
- Good compression
- Best for: Large datasets, cloud workflows, parallel processing
**CSV - Interoperability**
```python
adata.write_csvs('output_dir/')
```
- Human readable
- Compatible with all tools
- Large file sizes, slow
- Best for: Sharing with non-Python tools, small datasets
### Optimize file size
```python
# Before saving, optimize:
# 1. Convert to sparse if appropriate
from scipy.sparse import csr_matrix, issparse
if not issparse(adata.X):
density = np.count_nonzero(adata.X) / adata.X.size
if density < 0.5:
adata.X = csr_matrix(adata.X)
# 2. Convert strings to categoricals
adata.strings_to_categoricals()
# 3. Use compression
adata.write_h5ad('data.h5ad', compression='gzip', compression_opts=9)
# Typical results: 5-20x file size reduction
```
## Backed Mode Strategies
### Read-only analysis
```python
# Open in read-only backed mode
adata = ad.read_h5ad('data.h5ad', backed='r')
# Perform filtering without loading data
high_quality = adata[adata.obs['quality_score'] > 0.8]
# Load only filtered data
adata_filtered = high_quality.to_memory()
```
### Read-write modifications
```python
# Open in read-write backed mode
adata = ad.read_h5ad('data.h5ad', backed='r+')
# Modify metadata (written to disk)
adata.obs['new_annotation'] = values
# X remains on disk, modifications saved immediately
```
### Chunked processing
```python
# Process large dataset in chunks
adata = ad.read_h5ad('huge_dataset.h5ad', backed='r')
results = []
chunk_size = 1000
for i in range(0, adata.n_obs, chunk_size):
chunk = adata[i:i+chunk_size, :].to_memory()
result = process(chunk)
results.append(result)
final_result = combine(results)
```
## Performance Optimization
### Subsetting performance
```python
# Fast: Boolean indexing with arrays
mask = np.array(adata.obs['quality'] > 0.5)
subset = adata[mask, :]
# Slow: Boolean indexing with Series (creates view chain)
subset = adata[adata.obs['quality'] > 0.5, :]
# Fastest: Integer indices
indices = np.where(adata.obs['quality'] > 0.5)[0]
subset = adata[indices, :]
```
### Avoid repeated subsetting
```python
# Inefficient: Multiple subset operations
for cell_type in ['A', 'B', 'C']:
subset = adata[adata.obs['cell_type'] == cell_type]
process(subset)
# Efficient: Group and process
groups = adata.obs.groupby('cell_type').groups
for cell_type, indices in groups.items():
subset = adata[indices, :]
process(subset)
```
### Use chunked operations for large matrices
```python
# Process X in chunks
for chunk in adata.chunked_X(chunk_size=1000):
result = compute(chunk)
# More memory efficient than loading full X
```
## Working with Raw Data
### Store raw before filtering
```python
# Original data with all genes
adata = ad.AnnData(X=counts)
# Store raw before filtering
adata.raw = adata.copy()
# Filter to highly variable genes
adata = adata[:, adata.var['highly_variable']]
# Later: access original data
original_expression = adata.raw.X
all_genes = adata.raw.var_names
```
### When to use raw
```python
# Use raw for:
# - Differential expression on filtered genes
# - Visualization of specific genes not in filtered set
# - Accessing original counts after normalization
# Access raw data
if adata.raw is not None:
gene_expr = adata.raw[:, 'GENE_NAME'].X
else:
gene_expr = adata[:, 'GENE_NAME'].X
```
## Metadata Management
### Naming conventions
```python
# Consistent naming improves usability
# Observation metadata (obs):
# - cell_id, sample_id
# - cell_type, tissue, condition
# - n_genes, n_counts, percent_mito
# - cluster, leiden, louvain
# Variable metadata (var):
# - gene_id, gene_name
# - highly_variable, n_cells
# - mean_expression, dispersion
# Embeddings (obsm):
# - X_pca, X_umap, X_tsne
# - X_diffmap, X_draw_graph_fr
# Follow conventions from scanpy/scverse ecosystem
```
### Document metadata
```python
# Store metadata descriptions in uns
adata.uns['metadata_descriptions'] = {
'cell_type': 'Cell type annotation from automated clustering',
'quality_score': 'QC score from scrublet (0-1, higher is better)',
'batch': 'Experimental batch identifier'
}
# Store processing history
adata.uns['processing_steps'] = [
'Raw counts loaded from 10X',
'Filtered: n_genes > 200, n_counts < 50000',
'Normalized to 10000 counts per cell',
'Log transformed'
]
```
## Reproducibility
### Set random seeds
```python
import numpy as np
# Set seed for reproducible results
np.random.seed(42)
# Document in uns
adata.uns['random_seed'] = 42
```
### Store parameters
```python
# Store analysis parameters in uns
adata.uns['pca'] = {
'n_comps': 50,
'svd_solver': 'arpack',
'random_state': 42
}
adata.uns['neighbors'] = {
'n_neighbors': 15,
'n_pcs': 50,
'metric': 'euclidean',
'method': 'umap'
}
```
### Version tracking
```python
import anndata
import scanpy
import numpy
# Store versions
adata.uns['versions'] = {
'anndata': anndata.__version__,
'scanpy': scanpy.__version__,
'numpy': numpy.__version__,
'python': sys.version
}
```
## Error Handling
### Check data validity
```python
# Verify dimensions
assert adata.n_obs == len(adata.obs)
assert adata.n_vars == len(adata.var)
assert adata.X.shape == (adata.n_obs, adata.n_vars)
# Check for NaN values
has_nan = np.isnan(adata.X.data).any() if issparse(adata.X) else np.isnan(adata.X).any()
if has_nan:
print("Warning: Data contains NaN values")
# Check for negative values (if counts expected)
has_negative = (adata.X.data < 0).any() if issparse(adata.X) else (adata.X < 0).any()
if has_negative:
print("Warning: Data contains negative values")
```
### Validate metadata
```python
# Check for missing values
missing_obs = adata.obs.isnull().sum()
if missing_obs.any():
print("Missing values in obs:")
print(missing_obs[missing_obs > 0])
# Verify indices are unique
assert adata.obs_names.is_unique, "Observation names not unique"
assert adata.var_names.is_unique, "Variable names not unique"
# Check metadata alignment
assert len(adata.obs) == adata.n_obs
assert len(adata.var) == adata.n_vars
```
## Integration with Other Tools
### Scanpy integration
```python
import scanpy as sc
# AnnData is native format for scanpy
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata)
sc.pp.pca(adata)
sc.pp.neighbors(adata)
sc.tl.umap(adata)
```
### Pandas integration
```python
import pandas as pd
# Convert to DataFrame
df = adata.to_df()
# Create from DataFrame
adata = ad.AnnData(df)
# Work with metadata as DataFrames
adata.obs = adata.obs.merge(external_metadata, left_index=True, right_index=True)
```
### PyTorch integration
```python
from anndata.experimental import AnnLoader
# Create PyTorch DataLoader
dataloader = AnnLoader(adata, batch_size=128, shuffle=True)
# Iterate in training loop
for batch in dataloader:
X = batch.X
# Train model on batch
```
## Common Pitfalls
### Pitfall 1: Modifying views
```python
# Wrong: Modifying view can affect original
subset = adata[:100, :]
subset.X = new_data # May modify adata.X!
# Correct: Copy before modifying
subset = adata[:100, :].copy()
subset.X = new_data # Independent copy
```
### Pitfall 2: Index misalignment
```python
# Wrong: Assuming order matches
external_data = pd.read_csv('data.csv')
adata.obs['new_col'] = external_data['values'] # May misalign!
# Correct: Align on index
adata.obs['new_col'] = external_data.set_index('cell_id').loc[adata.obs_names, 'values']
```
### Pitfall 3: Mixing sparse and dense
```python
# Wrong: Converting sparse to dense uses huge memory
result = adata.X + 1 # Converts sparse to dense!
# Correct: Use sparse operations
from scipy.sparse import issparse
if issparse(adata.X):
result = adata.X.copy()
result.data += 1
```
### Pitfall 4: Not handling views
```python
# Wrong: Assuming subset is independent
subset = adata[mask, :]
del adata # subset may become invalid!
# Correct: Copy when needed
subset = adata[mask, :].copy()
del adata # subset remains valid
```
### Pitfall 5: Ignoring memory constraints
```python
# Wrong: Loading huge dataset into memory
adata = ad.read_h5ad('100GB_file.h5ad') # OOM error!
# Correct: Use backed mode
adata = ad.read_h5ad('100GB_file.h5ad', backed='r')
subset = adata[adata.obs['keep']].to_memory()
```
## Workflow Example
Complete best-practices workflow:
```python
import anndata as ad
import numpy as np
from scipy.sparse import csr_matrix
# 1. Load with backed mode if large
adata = ad.read_h5ad('data.h5ad', backed='r')
# 2. Quick metadata check without loading data
print(f"Dataset: {adata.n_obs} cells × {adata.n_vars} genes")
# 3. Filter based on metadata
high_quality = adata[adata.obs['quality_score'] > 0.8]
# 4. Load filtered subset to memory
adata = high_quality.to_memory()
# 5. Convert to optimal storage types
adata.strings_to_categoricals()
if not issparse(adata.X):
density = np.count_nonzero(adata.X) / adata.X.size
if density < 0.5:
adata.X = csr_matrix(adata.X)
# 6. Store raw before filtering genes
adata.raw = adata.copy()
# 7. Filter to highly variable genes
adata = adata[:, adata.var['highly_variable']].copy()
# 8. Document processing
adata.uns['processing'] = {
'filtered': 'quality_score > 0.8',
'n_hvg': adata.n_vars,
'date': '2025-11-03'
}
# 9. Save optimized
adata.write_h5ad('processed.h5ad', compression='gzip')
```