Files
gh-k-dense-ai-claude-scient…/skills/alphafold-database/references/api_reference.md
2025-11-30 08:30:10 +08:00

424 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# AlphaFold Database API Reference
This document provides comprehensive technical documentation for programmatic access to the AlphaFold Protein Structure Database.
## Table of Contents
1. [REST API Endpoints](#rest-api-endpoints)
2. [File Access Patterns](#file-access-patterns)
3. [Data Schemas](#data-schemas)
4. [Google Cloud Access](#google-cloud-access)
5. [BigQuery Schema](#bigquery-schema)
6. [Best Practices](#best-practices)
7. [Error Handling](#error-handling)
8. [Rate Limiting](#rate-limiting)
---
## REST API Endpoints
### Base URL
```
https://alphafold.ebi.ac.uk/api/
```
### 1. Get Prediction by UniProt Accession
**Endpoint:** `/prediction/{uniprot_id}`
**Method:** GET
**Description:** Retrieve AlphaFold prediction metadata for a given UniProt accession.
**Parameters:**
- `uniprot_id` (required): UniProt accession (e.g., "P00520")
**Example Request:**
```bash
curl https://alphafold.ebi.ac.uk/api/prediction/P00520
```
**Example Response:**
```json
[
{
"entryId": "AF-P00520-F1",
"gene": "ABL1",
"uniprotAccession": "P00520",
"uniprotId": "ABL1_HUMAN",
"uniprotDescription": "Tyrosine-protein kinase ABL1",
"taxId": 9606,
"organismScientificName": "Homo sapiens",
"uniprotStart": 1,
"uniprotEnd": 1130,
"uniprotSequence": "MLEICLKLVGCKSKKGLSSSSSCYLEEALQRPVASDFEPQGLSEAARWNSKENLLAGPSENDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNSLEKHSWYHGPVSRNAAEYLLSSGINGSFLVRESESSPGQRSISLRYEGRVYHYRINTASDGKLYVSSESRFNTLAELVHHHSTVADGLITTLHYPAPKRNKPTVYGVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGVWKKYSLTVAVKTLKEDTMEVEEFLKEAAVMKEIKHPNLVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVNAVVLLYMATQISSAMEYLEKKNFIHRDLAARNCLVGENHLVKVADFGLSRLMTGDTYTAHAGAKFPIKWTAPESLAYNKFSIKSDVWAFGVLLWEIATYGMSPYPGIDLSQVYELLEKDYRMERPEGCPEKVYELMRACWQWNPSDRPSFAEIHQAFETMFQESSISDEVEKELGKQGVRGAVSTLLQAPELPTKTRTSRRAAEHRDTTDVPEMPHSKGQGESDPLDHEPAVSPLLPRKERGPPEGGLNEDERLLPKDKKTNLFSALIKKKKKTAPTPPKRSSSFREMDGQPERRGAGEEEGRDISNGALAFTPLDTADPAKSPKPSNGAGVPNGALRESGGSGFRSPHLWKKSSTLTSSRLATGEEEGGGSSSKRFLRSCSASCVPHGAKDTEWRSVTLPRDLQSTGRQFDSSTFGGHKSEKPALPRKRAGENRSDQVTRGTVTPPPRLVKKNEEAADEVFKDIMESSPGSSPPNLTPKPLRRQVTVAPASGLPHKEEAGKGSALGTPAAAEPVTPTSKAGSGAPGGTSKGPAEESRVRRHKHSSESPGRDKGKLSRLKPAPPPPPAASAGKAGGKPSQSPSQEAAGEAVLGAKTKATSLVDAVNSDAAKPSQPGEGLKKPVLPATPKPQSAKPSGTPISPAPVPSTLPSASSALAGDQPSSTAFIPLISTRVSLRKTRQPPERIASGAITKGVVLDSTEALCLAISRNSEQMASHSAVLEAGKNLYTFCVSYVDSIQQMRNKFAFREAINKLENNLRELQICPATAGSGPAATQDFSKLLSSVKEISDIVQR",
"modelCreatedDate": "2021-07-01",
"latestVersion": 4,
"allVersions": [1, 2, 3, 4],
"cifUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.cif",
"bcifUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.bcif",
"pdbUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.pdb",
"paeImageUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.png",
"paeDocUrl": "https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.json"
}
]
```
**Response Fields:**
- `entryId`: AlphaFold internal identifier (format: AF-{uniprot}-F{fragment})
- `gene`: Gene symbol
- `uniprotAccession`: UniProt accession
- `uniprotId`: UniProt entry name
- `uniprotDescription`: Protein description
- `taxId`: NCBI taxonomy identifier
- `organismScientificName`: Species scientific name
- `uniprotStart/uniprotEnd`: Residue range covered
- `uniprotSequence`: Full protein sequence
- `modelCreatedDate`: Initial prediction date
- `latestVersion`: Current model version number
- `allVersions`: List of available versions
- `cifUrl/bcifUrl/pdbUrl`: Structure file download URLs
- `paeImageUrl`: PAE visualization image URL
- `paeDocUrl`: PAE data JSON URL
### 2. 3D-Beacons Integration
AlphaFold is integrated into the 3D-Beacons network for federated structure access.
**Endpoint:** `https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/api/uniprot/summary/{uniprot_id}.json`
**Example:**
```python
import requests
uniprot_id = "P00520"
url = f"https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/api/uniprot/summary/{uniprot_id}.json"
response = requests.get(url)
data = response.json()
# Filter for AlphaFold structures
alphafold_structures = [
s for s in data['structures']
if s['provider'] == 'AlphaFold DB'
]
```
---
## File Access Patterns
### Direct File Downloads
All AlphaFold files are accessible via direct URLs without authentication.
**URL Pattern:**
```
https://alphafold.ebi.ac.uk/files/{alphafold_id}-{file_type}_{version}.{extension}
```
**Components:**
- `{alphafold_id}`: Entry identifier (e.g., "AF-P00520-F1")
- `{file_type}`: Type of file (see below)
- `{version}`: Database version (e.g., "v4")
- `{extension}`: File format extension
### Available File Types
#### 1. Model Coordinates
**mmCIF Format (Recommended):**
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.cif
```
- Standard crystallographic format
- Contains full metadata
- Supports large structures
- File size: Variable (100KB - 10MB typical)
**Binary CIF Format:**
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.bcif
```
- Compressed binary version of mmCIF
- Smaller file size (~70% reduction)
- Faster parsing
- Requires specialized parser
**PDB Format (Legacy):**
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-model_v4.pdb
```
- Traditional PDB text format
- Limited to 99,999 atoms
- Widely supported by older tools
- File size: Similar to mmCIF
#### 2. Confidence Metrics
**Per-Residue Confidence (JSON):**
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-confidence_v4.json
```
**Structure:**
```json
{
"confidenceScore": [87.5, 91.2, 93.8, ...],
"confidenceCategory": ["high", "very_high", "very_high", ...]
}
```
**Fields:**
- `confidenceScore`: Array of pLDDT values (0-100) for each residue
- `confidenceCategory`: Categorical classification (very_low, low, high, very_high)
#### 3. Predicted Aligned Error (JSON)
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.json
```
**Structure:**
```json
{
"distance": [[0, 2.3, 4.5, ...], [2.3, 0, 3.1, ...], ...],
"max_predicted_aligned_error": 31.75
}
```
**Fields:**
- `distance`: N×N matrix of PAE values in Ångströms
- `max_predicted_aligned_error`: Maximum PAE value in the matrix
#### 4. PAE Visualization (PNG)
```
https://alphafold.ebi.ac.uk/files/AF-P00520-F1-predicted_aligned_error_v4.png
```
- Pre-rendered PAE heatmap
- Useful for quick visual assessment
- Resolution: Variable based on protein size
### Batch Download Strategy
For downloading multiple files efficiently, use concurrent downloads with proper error handling and rate limiting to respect server resources.
---
## Data Schemas
### Coordinate File (mmCIF) Schema
AlphaFold mmCIF files contain:
**Key Data Categories:**
- `_entry`: Entry-level metadata
- `_struct`: Structure title and description
- `_entity`: Molecular entity information
- `_atom_site`: Atomic coordinates and properties
- `_pdbx_struct_assembly`: Biological assembly info
**Important Fields in `_atom_site`:**
- `group_PDB`: "ATOM" for all records
- `id`: Atom serial number
- `label_atom_id`: Atom name (e.g., "CA", "N", "C")
- `label_comp_id`: Residue name (e.g., "ALA", "GLY")
- `label_seq_id`: Residue sequence number
- `Cartn_x/y/z`: Cartesian coordinates (Ångströms)
- `B_iso_or_equiv`: B-factor (contains pLDDT score)
**pLDDT in B-factor Column:**
AlphaFold stores per-residue confidence (pLDDT) in the B-factor field. This allows standard structure viewers to color by confidence automatically.
### Confidence JSON Schema
```json
{
"confidenceScore": [
87.5, // Residue 1 pLDDT
91.2, // Residue 2 pLDDT
93.8 // Residue 3 pLDDT
// ... one value per residue
],
"confidenceCategory": [
"high", // Residue 1 category
"very_high", // Residue 2 category
"very_high" // Residue 3 category
// ... one category per residue
]
}
```
**Confidence Categories:**
- `very_high`: pLDDT > 90
- `high`: 70 < pLDDT ≤ 90
- `low`: 50 < pLDDT ≤ 70
- `very_low`: pLDDT ≤ 50
### PAE JSON Schema
```json
{
"distance": [
[0.0, 2.3, 4.5, ...], // PAE from residue 1 to all residues
[2.3, 0.0, 3.1, ...], // PAE from residue 2 to all residues
[4.5, 3.1, 0.0, ...] // PAE from residue 3 to all residues
// ... N×N matrix for N residues
],
"max_predicted_aligned_error": 31.75
}
```
**Interpretation:**
- `distance[i][j]`: Expected position error (Ångströms) of residue j if the predicted and true structures were aligned on residue i
- Lower values indicate more confident relative positioning
- Diagonal is always 0 (residue aligned to itself)
- Matrix is not symmetric: distance[i][j] ≠ distance[j][i]
---
## Google Cloud Access
AlphaFold DB is hosted on Google Cloud Platform for bulk access.
### Cloud Storage Bucket
**Bucket:** `gs://public-datasets-deepmind-alphafold-v4`
**Directory Structure:**
```
gs://public-datasets-deepmind-alphafold-v4/
├── accession_ids.csv # Index of all entries (13.5 GB)
├── sequences.fasta # All protein sequences (16.5 GB)
└── proteomes/ # Grouped by species (1M+ archives)
```
### Installing gsutil
```bash
# Using pip
pip install gsutil
# Or install Google Cloud SDK
curl https://sdk.cloud.google.com | bash
```
### Downloading Proteomes
**By Taxonomy ID:**
```bash
# Download all archives for a species
TAX_ID=9606 # Human
gsutil -m cp gs://public-datasets-deepmind-alphafold-v4/proteomes/proteome-tax_id-${TAX_ID}-*_v4.tar .
```
---
## BigQuery Schema
AlphaFold metadata is available in BigQuery for SQL-based queries.
**Dataset:** `bigquery-public-data.deepmind_alphafold`
**Table:** `metadata`
### Key Fields
| Field | Type | Description |
|-------|------|-------------|
| `entryId` | STRING | AlphaFold entry ID |
| `uniprotAccession` | STRING | UniProt accession |
| `gene` | STRING | Gene symbol |
| `organismScientificName` | STRING | Species scientific name |
| `taxId` | INTEGER | NCBI taxonomy ID |
| `globalMetricValue` | FLOAT | Overall quality metric |
| `fractionPlddtVeryHigh` | FLOAT | Fraction with pLDDT ≥ 90 |
| `isReviewed` | BOOLEAN | Swiss-Prot reviewed status |
| `sequenceLength` | INTEGER | Protein sequence length |
### Example Query
```sql
SELECT
entryId,
uniprotAccession,
gene,
fractionPlddtVeryHigh
FROM `bigquery-public-data.deepmind_alphafold.metadata`
WHERE
taxId = 9606 -- Homo sapiens
AND fractionPlddtVeryHigh > 0.8
AND isReviewed = TRUE
ORDER BY fractionPlddtVeryHigh DESC
LIMIT 100;
```
---
## Best Practices
### 1. Caching Strategy
Always cache downloaded files locally to avoid repeated downloads.
### 2. Error Handling
Implement robust error handling for API requests with retry logic for transient failures.
### 3. Bulk Processing
For processing many proteins, use concurrent downloads with appropriate rate limiting.
### 4. Version Management
Always specify and track database versions in your code (current: v4).
---
## Error Handling
### Common HTTP Status Codes
| Code | Meaning | Action |
|------|---------|--------|
| 200 | Success | Process response normally |
| 404 | Not Found | No AlphaFold prediction for this UniProt ID |
| 429 | Too Many Requests | Implement rate limiting and retry with backoff |
| 500 | Server Error | Retry with exponential backoff |
| 503 | Service Unavailable | Wait and retry later |
---
## Rate Limiting
### Recommendations
- Limit to **10 concurrent requests** maximum
- Add **100-200ms delay** between sequential requests
- Use Google Cloud for bulk downloads instead of REST API
- Cache all downloaded data locally
---
## Additional Resources
- **AlphaFold GitHub:** https://github.com/google-deepmind/alphafold
- **Google Cloud Documentation:** https://cloud.google.com/datasets/alphafold
- **3D-Beacons Documentation:** https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons/docs
- **Biopython Tutorial:** https://biopython.org/wiki/AlphaFold
## Version History
- **v1** (2021): Initial release with ~350K structures
- **v2** (2022): Expanded to 200M+ structures
- **v3** (2023): Updated models and expanded coverage
- **v4** (2024): Current version with improved confidence metrics
## Citation
When using AlphaFold DB in publications, cite:
1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583589 (2021).
2. Varadi, M. et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368D375 (2024).