Files
gh-k-dense-ai-claude-scient…/skills/aeon/references/forecasting.md
2025-11-30 08:30:10 +08:00

141 lines
3.8 KiB
Markdown

# Time Series Forecasting
Aeon provides forecasting algorithms for predicting future time series values.
## Naive and Baseline Methods
Simple forecasting strategies for comparison:
- `NaiveForecaster` - Multiple strategies: last value, mean, seasonal naive
- Parameters: `strategy` ("last", "mean", "seasonal"), `sp` (seasonal period)
- **Use when**: Establishing baselines or simple patterns
## Statistical Models
Classical time series forecasting methods:
### ARIMA
- `ARIMA` - AutoRegressive Integrated Moving Average
- Parameters: `p` (AR order), `d` (differencing), `q` (MA order)
- **Use when**: Linear patterns, stationary or difference-stationary series
### Exponential Smoothing
- `ETS` - Error-Trend-Seasonal decomposition
- Parameters: `error`, `trend`, `seasonal` types
- **Use when**: Trend and seasonal patterns present
### Threshold Autoregressive
- `TAR` - Threshold Autoregressive model for regime switching
- `AutoTAR` - Automated threshold discovery
- **Use when**: Series exhibits different behaviors in different regimes
### Theta Method
- `Theta` - Classical Theta forecasting
- Parameters: `theta`, `weights` for decomposition
- **Use when**: Simple but effective baseline needed
### Time-Varying Parameter
- `TVP` - Time-varying parameter model with Kalman filtering
- **Use when**: Parameters change over time
## Deep Learning Forecasters
Neural networks for complex temporal patterns:
- `TCNForecaster` - Temporal Convolutional Network
- Dilated convolutions for large receptive fields
- **Use when**: Long sequences, need non-recurrent architecture
- `DeepARNetwork` - Probabilistic forecasting with RNNs
- Provides prediction intervals
- **Use when**: Need probabilistic forecasts, uncertainty quantification
## Regression-Based Forecasting
Apply regression to lagged features:
- `RegressionForecaster` - Wraps regressors for forecasting
- Parameters: `window_length`, `horizon`
- **Use when**: Want to use any regressor as forecaster
## Quick Start
```python
from aeon.forecasting.naive import NaiveForecaster
from aeon.forecasting.arima import ARIMA
import numpy as np
# Create time series
y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
# Naive baseline
naive = NaiveForecaster(strategy="last")
naive.fit(y)
forecast_naive = naive.predict(fh=[1, 2, 3])
# ARIMA model
arima = ARIMA(order=(1, 1, 1))
arima.fit(y)
forecast_arima = arima.predict(fh=[1, 2, 3])
```
## Forecasting Horizon
The forecasting horizon (`fh`) specifies which future time points to predict:
```python
# Relative horizon (next 3 steps)
fh = [1, 2, 3]
# Absolute horizon (specific time indices)
from aeon.forecasting.base import ForecastingHorizon
fh = ForecastingHorizon([11, 12, 13], is_relative=False)
```
## Model Selection
- **Baseline**: NaiveForecaster with seasonal strategy
- **Linear patterns**: ARIMA
- **Trend + seasonality**: ETS
- **Regime changes**: TAR, AutoTAR
- **Complex patterns**: TCNForecaster
- **Probabilistic**: DeepARNetwork
- **Long sequences**: TCNForecaster
- **Short sequences**: ARIMA, ETS
## Evaluation Metrics
Use standard forecasting metrics:
```python
from aeon.performance_metrics.forecasting import (
mean_absolute_error,
mean_squared_error,
mean_absolute_percentage_error
)
# Calculate error
mae = mean_absolute_error(y_true, y_pred)
mse = mean_squared_error(y_true, y_pred)
mape = mean_absolute_percentage_error(y_true, y_pred)
```
## Exogenous Variables
Many forecasters support exogenous features:
```python
# Train with exogenous variables
forecaster.fit(y, X=X_train)
# Predict requires future exogenous values
y_pred = forecaster.predict(fh=[1, 2, 3], X=X_test)
```
## Base Classes
- `BaseForecaster` - Abstract base for all forecasters
- `BaseDeepForecaster` - Base for deep learning forecasters
Extend these to implement custom forecasting algorithms.