Files
gh-k-dense-ai-claude-scient…/skills/adaptyv/reference/experiments.md
2025-11-30 08:30:10 +08:00

361 lines
9.7 KiB
Markdown

# Experiment Types and Workflows
## Overview
Adaptyv provides multiple experimental assay types for comprehensive protein characterization. Each experiment type has specific applications, workflows, and data outputs.
## Binding Assays
### Description
Measure protein-target interactions using biolayer interferometry (BLI), a label-free technique that monitors biomolecular binding in real-time.
### Use Cases
- Antibody-antigen binding characterization
- Receptor-ligand interaction analysis
- Protein-protein interaction studies
- Affinity maturation screening
- Epitope binning experiments
### Technology: Biolayer Interferometry (BLI)
BLI measures the interference pattern of reflected light from two surfaces:
- **Reference layer** - Biosensor tip surface
- **Biological layer** - Accumulated bound molecules
As molecules bind, the optical thickness increases, causing a wavelength shift proportional to binding.
**Advantages:**
- Label-free detection
- Real-time kinetics
- High-throughput compatible
- Works in crude samples
- Minimal sample consumption
### Measured Parameters
**Kinetic constants:**
- **KD** - Equilibrium dissociation constant (binding affinity)
- **kon** - Association rate constant (binding speed)
- **koff** - Dissociation rate constant (unbinding speed)
**Typical ranges:**
- Strong binders: KD < 1 nM
- Moderate binders: KD = 1-100 nM
- Weak binders: KD > 100 nM
### Workflow
1. **Sequence submission** - Provide protein sequences in FASTA format
2. **Expression** - Proteins expressed in appropriate host system
3. **Purification** - Automated purification protocols
4. **BLI assay** - Real-time binding measurements against specified targets
5. **Analysis** - Kinetic curve fitting and quality assessment
6. **Results delivery** - Binding parameters with confidence metrics
### Sample Requirements
- Protein sequence (standard amino acid codes)
- Target specification (from catalog or custom request)
- Buffer conditions (standard or custom)
- Expected concentration range (optional, improves assay design)
### Results Format
```json
{
"sequence_id": "antibody_variant_1",
"target": "Human PD-L1",
"measurements": {
"kd": 2.5e-9,
"kd_error": 0.3e-9,
"kon": 1.8e5,
"kon_error": 0.2e5,
"koff": 4.5e-4,
"koff_error": 0.5e-4
},
"quality_metrics": {
"confidence": "high|medium|low",
"r_squared": 0.97,
"chi_squared": 0.02,
"flags": []
},
"raw_data_url": "https://..."
}
```
## Expression Testing
### Description
Quantify protein expression levels in various host systems to assess producibility and optimize sequences for manufacturing.
### Use Cases
- Screening variants for high expression
- Optimizing codon usage
- Identifying expression bottlenecks
- Selecting candidates for scale-up
- Comparing expression systems
### Host Systems
Available expression platforms:
- **E. coli** - Rapid, cost-effective, prokaryotic system
- **Mammalian cells** - Native post-translational modifications
- **Yeast** - Eukaryotic system with simpler growth requirements
- **Insect cells** - Alternative eukaryotic platform
### Measured Parameters
- **Total protein yield** (mg/L culture)
- **Soluble fraction** (percentage)
- **Purity** (after initial purification)
- **Expression time course** (optional)
### Workflow
1. **Sequence submission** - Provide protein sequences
2. **Construct generation** - Cloning into expression vectors
3. **Expression** - Culture in specified host system
4. **Quantification** - Protein measurement via multiple methods
5. **Analysis** - Expression level comparison and ranking
6. **Results delivery** - Yield data and recommendations
### Results Format
```json
{
"sequence_id": "variant_1",
"host_system": "E. coli",
"measurements": {
"total_yield_mg_per_l": 25.5,
"soluble_fraction_percent": 78,
"purity_percent": 92
},
"ranking": {
"percentile": 85,
"notes": "High expression, good solubility"
}
}
```
## Thermostability Testing
### Description
Measure protein thermal stability to assess structural integrity, predict shelf-life, and identify stabilizing mutations.
### Use Cases
- Selecting thermally stable variants
- Formulation development
- Shelf-life prediction
- Stability-driven protein engineering
- Quality control screening
### Measurement Techniques
**Differential Scanning Fluorimetry (DSF):**
- Monitors protein unfolding via fluorescent dye binding
- Determines melting temperature (Tm)
- High-throughput capable
**Circular Dichroism (CD):**
- Secondary structure analysis
- Thermal unfolding curves
- Reversibility assessment
### Measured Parameters
- **Tm** - Melting temperature (midpoint of unfolding)
- **ΔH** - Enthalpy of unfolding
- **Aggregation temperature** (Tagg)
- **Reversibility** - Refolding after heating
### Workflow
1. **Sequence submission** - Provide protein sequences
2. **Expression and purification** - Standard protocols
3. **Thermostability assay** - Temperature gradient analysis
4. **Data analysis** - Curve fitting and parameter extraction
5. **Results delivery** - Stability metrics with ranking
### Results Format
```json
{
"sequence_id": "variant_1",
"measurements": {
"tm_celsius": 68.5,
"tm_error": 0.5,
"tagg_celsius": 72.0,
"reversibility_percent": 85
},
"quality_metrics": {
"curve_quality": "excellent",
"cooperativity": "two-state"
}
}
```
## Enzyme Activity Assays
### Description
Measure enzymatic function including substrate turnover, catalytic efficiency, and inhibitor sensitivity.
### Use Cases
- Screening enzyme variants for improved activity
- Substrate specificity profiling
- Inhibitor testing
- pH and temperature optimization
- Mechanistic studies
### Assay Types
**Continuous assays:**
- Chromogenic substrates
- Fluorogenic substrates
- Real-time monitoring
**Endpoint assays:**
- HPLC quantification
- Mass spectrometry
- Colorimetric detection
### Measured Parameters
**Kinetic parameters:**
- **kcat** - Turnover number (catalytic rate constant)
- **KM** - Michaelis constant (substrate affinity)
- **kcat/KM** - Catalytic efficiency
- **IC50** - Inhibitor concentration for 50% inhibition
**Activity metrics:**
- Specific activity (units/mg protein)
- Relative activity vs. reference
- Substrate specificity profile
### Workflow
1. **Sequence submission** - Provide enzyme sequences
2. **Expression and purification** - Optimized for activity retention
3. **Activity assay** - Substrate turnover measurements
4. **Kinetic analysis** - Michaelis-Menten fitting
5. **Results delivery** - Kinetic parameters and rankings
### Results Format
```json
{
"sequence_id": "enzyme_variant_1",
"substrate": "substrate_name",
"measurements": {
"kcat_per_second": 125,
"km_micromolar": 45,
"kcat_km": 2.8,
"specific_activity": 180
},
"quality_metrics": {
"confidence": "high",
"r_squared": 0.99
},
"ranking": {
"relative_activity": 1.8,
"improvement_vs_wildtype": "80%"
}
}
```
## Experiment Design Best Practices
### Sequence Submission
1. **Use clear identifiers** - Name sequences descriptively
2. **Include controls** - Submit wild-type or reference sequences
3. **Batch similar variants** - Group related sequences in single submission
4. **Validate sequences** - Check for errors before submission
### Sample Size
- **Pilot studies** - 5-10 sequences to test feasibility
- **Library screening** - 50-500 sequences for variant exploration
- **Focused optimization** - 10-50 sequences for fine-tuning
- **Large-scale campaigns** - 500+ sequences for ML-driven design
### Quality Control
Adaptyv includes automated QC steps:
- Expression verification before assay
- Replicate measurements for reliability
- Positive/negative controls in each batch
- Statistical validation of results
### Timeline Expectations
**Standard turnaround:** ~21 days from submission to results
**Timeline breakdown:**
- Construct generation: 3-5 days
- Expression: 5-7 days
- Purification: 2-3 days
- Assay execution: 3-5 days
- Analysis and QC: 2-3 days
**Factors affecting timeline:**
- Custom targets (add 1-2 weeks)
- Novel assay development (add 2-4 weeks)
- Large batch sizes (may add 1 week)
### Cost Optimization
1. **Batch submissions** - Lower per-sequence cost
2. **Standard targets** - Catalog antigens are faster/cheaper
3. **Standard conditions** - Custom buffers add cost
4. **Computational pre-filtering** - Submit only promising candidates
## Combining Experiment Types
For comprehensive protein characterization, combine multiple assays:
**Therapeutic antibody development:**
1. Binding assay → Identify high-affinity binders
2. Expression testing → Select manufacturable candidates
3. Thermostability → Ensure formulation stability
**Enzyme engineering:**
1. Activity assay → Screen for improved catalysis
2. Expression testing → Ensure producibility
3. Thermostability → Validate industrial robustness
**Sequential vs. Parallel:**
- **Sequential** - Use results from early assays to filter candidates
- **Parallel** - Run all assays simultaneously for faster results
## Data Integration
Results integrate with computational workflows:
1. **Download raw data** via API
2. **Parse results** into standardized format
3. **Feed into ML models** for next-round design
4. **Track experiments** with metadata tags
5. **Visualize trends** across design iterations
## Support and Troubleshooting
**Common issues:**
- Low expression → Consider sequence optimization (see protein_optimization.md)
- Poor binding → Verify target specification and expected range
- Variable results → Check sequence quality and controls
- Incomplete data → Contact support with experiment ID
**Getting help:**
- Email: support@adaptyvbio.com
- Include experiment ID and specific question
- Provide context (design goals, expected results)
- Response time: <24 hours for active experiments