Files
2025-11-30 08:30:10 +08:00

685 lines
16 KiB
Markdown

# TDC Utilities and Data Functions
This document provides comprehensive documentation for TDC's data processing, evaluation, and utility functions.
## Overview
TDC provides utilities organized into four main categories:
1. **Dataset Splits** - Train/validation/test partitioning strategies
2. **Model Evaluation** - Standardized performance metrics
3. **Data Processing** - Molecule conversion, filtering, and transformation
4. **Entity Retrieval** - Database queries and conversions
## 1. Dataset Splits
Dataset splitting is crucial for evaluating model generalization. TDC provides multiple splitting strategies designed for therapeutic ML.
### Basic Split Usage
```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang')
# Get split with default parameters
split = data.get_split()
# Returns: {'train': DataFrame, 'valid': DataFrame, 'test': DataFrame}
# Customize split parameters
split = data.get_split(
method='scaffold',
seed=42,
frac=[0.7, 0.1, 0.2]
)
```
### Split Methods
#### Random Split
Random shuffling of data - suitable for general ML tasks.
```python
split = data.get_split(method='random', seed=1)
```
**When to use:**
- Baseline model evaluation
- When chemical/temporal structure is not important
- Quick prototyping
**Not recommended for:**
- Realistic drug discovery scenarios
- Evaluating generalization to new chemical matter
#### Scaffold Split
Splits based on molecular scaffolds (Bemis-Murcko scaffolds) - ensures test molecules are structurally distinct from training.
```python
split = data.get_split(method='scaffold', seed=1)
```
**When to use:**
- Default for most single prediction tasks
- Evaluating generalization to new chemical series
- Realistic drug discovery scenarios
**How it works:**
1. Extract Bemis-Murcko scaffold from each molecule
2. Group molecules by scaffold
3. Assign scaffolds to train/valid/test sets
4. Ensures test molecules have unseen scaffolds
#### Cold Splits (DTI/DDI Tasks)
For multi-instance prediction, cold splits ensure test set contains unseen drugs, targets, or both.
**Cold Drug Split:**
```python
from tdc.multi_pred import DTI
data = DTI(name='BindingDB_Kd')
split = data.get_split(method='cold_drug', seed=1)
```
- Test set contains drugs not seen during training
- Evaluates generalization to new compounds
**Cold Target Split:**
```python
split = data.get_split(method='cold_target', seed=1)
```
- Test set contains targets not seen during training
- Evaluates generalization to new proteins
**Cold Drug-Target Split:**
```python
split = data.get_split(method='cold_drug_target', seed=1)
```
- Test set contains novel drug-target pairs
- Most challenging evaluation scenario
#### Temporal Split
For datasets with temporal information - ensures test data is from later time points.
```python
split = data.get_split(method='temporal', seed=1)
```
**When to use:**
- Datasets with time stamps
- Simulating prospective prediction
- Clinical trial outcome prediction
### Custom Split Fractions
```python
# 80% train, 10% valid, 10% test
split = data.get_split(method='scaffold', frac=[0.8, 0.1, 0.1])
# 70% train, 15% valid, 15% test
split = data.get_split(method='scaffold', frac=[0.7, 0.15, 0.15])
```
### Stratified Splits
For classification tasks with imbalanced labels:
```python
split = data.get_split(method='scaffold', stratified=True)
```
Maintains label distribution across train/valid/test sets.
## 2. Model Evaluation
TDC provides standardized evaluation metrics for different task types.
### Basic Evaluator Usage
```python
from tdc import Evaluator
# Initialize evaluator
evaluator = Evaluator(name='ROC-AUC')
# Evaluate predictions
score = evaluator(y_true, y_pred)
```
### Classification Metrics
#### ROC-AUC
Receiver Operating Characteristic - Area Under Curve
```python
evaluator = Evaluator(name='ROC-AUC')
score = evaluator(y_true, y_pred_proba)
```
**Best for:**
- Binary classification
- Imbalanced datasets
- Overall discriminative ability
**Range:** 0-1 (higher is better, 0.5 is random)
#### PR-AUC
Precision-Recall Area Under Curve
```python
evaluator = Evaluator(name='PR-AUC')
score = evaluator(y_true, y_pred_proba)
```
**Best for:**
- Highly imbalanced datasets
- When positive class is rare
- Complements ROC-AUC
**Range:** 0-1 (higher is better)
#### F1 Score
Harmonic mean of precision and recall
```python
evaluator = Evaluator(name='F1')
score = evaluator(y_true, y_pred_binary)
```
**Best for:**
- Balance between precision and recall
- Multi-class classification
**Range:** 0-1 (higher is better)
#### Accuracy
Fraction of correct predictions
```python
evaluator = Evaluator(name='Accuracy')
score = evaluator(y_true, y_pred_binary)
```
**Best for:**
- Balanced datasets
- Simple baseline metric
**Not recommended for:** Imbalanced datasets
#### Cohen's Kappa
Agreement between predictions and ground truth, accounting for chance
```python
evaluator = Evaluator(name='Kappa')
score = evaluator(y_true, y_pred_binary)
```
**Range:** -1 to 1 (higher is better, 0 is random)
### Regression Metrics
#### RMSE - Root Mean Squared Error
```python
evaluator = Evaluator(name='RMSE')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Continuous predictions
- Penalizes large errors heavily
**Range:** 0-∞ (lower is better)
#### MAE - Mean Absolute Error
```python
evaluator = Evaluator(name='MAE')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Continuous predictions
- More robust to outliers than RMSE
**Range:** 0-∞ (lower is better)
#### R² - Coefficient of Determination
```python
evaluator = Evaluator(name='R2')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Variance explained by model
- Comparing different models
**Range:** -∞ to 1 (higher is better, 1 is perfect)
#### MSE - Mean Squared Error
```python
evaluator = Evaluator(name='MSE')
score = evaluator(y_true, y_pred)
```
**Range:** 0-∞ (lower is better)
### Ranking Metrics
#### Spearman Correlation
Rank correlation coefficient
```python
evaluator = Evaluator(name='Spearman')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Ranking tasks
- Non-linear relationships
- Ordinal data
**Range:** -1 to 1 (higher is better)
#### Pearson Correlation
Linear correlation coefficient
```python
evaluator = Evaluator(name='Pearson')
score = evaluator(y_true, y_pred)
```
**Best for:**
- Linear relationships
- Continuous data
**Range:** -1 to 1 (higher is better)
### Multi-Label Classification
```python
evaluator = Evaluator(name='Micro-F1')
score = evaluator(y_true_multilabel, y_pred_multilabel)
```
Available: `Micro-F1`, `Macro-F1`, `Micro-AUPR`, `Macro-AUPR`
### Benchmark Group Evaluation
For benchmark groups, evaluation requires multiple seeds:
```python
from tdc.benchmark_group import admet_group
group = admet_group(path='data/')
benchmark = group.get('Caco2_Wang')
# Predictions must be dict with seeds as keys
predictions = {}
for seed in [1, 2, 3, 4, 5]:
# Train model and predict
predictions[seed] = model_predictions
# Evaluate with mean and std across seeds
results = group.evaluate(predictions)
print(results) # {'Caco2_Wang': [mean_score, std_score]}
```
## 3. Data Processing
TDC provides 11 comprehensive data processing utilities.
### Molecule Format Conversion
Convert between ~15 molecular representations.
```python
from tdc.chem_utils import MolConvert
# SMILES to PyTorch Geometric
converter = MolConvert(src='SMILES', dst='PyG')
pyg_graph = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
# SMILES to DGL
converter = MolConvert(src='SMILES', dst='DGL')
dgl_graph = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
# SMILES to Morgan Fingerprint (ECFP)
converter = MolConvert(src='SMILES', dst='ECFP')
fingerprint = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
```
**Available formats:**
- **Text**: SMILES, SELFIES, InChI
- **Fingerprints**: ECFP (Morgan), MACCS, RDKit, AtomPair, TopologicalTorsion
- **Graphs**: PyG (PyTorch Geometric), DGL (Deep Graph Library)
- **3D**: Graph3D, Coulomb Matrix, Distance Matrix
**Batch conversion:**
```python
converter = MolConvert(src='SMILES', dst='PyG')
graphs = converter(['SMILES1', 'SMILES2', 'SMILES3'])
```
### Molecule Filters
Remove non-drug-like molecules using curated chemical rules.
```python
from tdc.chem_utils import MolFilter
# Initialize filter with rules
mol_filter = MolFilter(
rules=['PAINS', 'BMS'], # Chemical filter rules
property_filters_dict={
'MW': (150, 500), # Molecular weight range
'LogP': (-0.4, 5.6), # Lipophilicity range
'HBD': (0, 5), # H-bond donors
'HBA': (0, 10) # H-bond acceptors
}
)
# Filter molecules
filtered_smiles = mol_filter(smiles_list)
```
**Available filter rules:**
- `PAINS` - Pan-Assay Interference Compounds
- `BMS` - Bristol-Myers Squibb HTS deck filters
- `Glaxo` - GlaxoSmithKline filters
- `Dundee` - University of Dundee filters
- `Inpharmatica` - Inpharmatica filters
- `LINT` - Pfizer LINT filters
### Label Distribution Visualization
```python
# Visualize label distribution
data.label_distribution()
# Print statistics
data.print_stats()
```
Displays histogram and computes mean, median, std for continuous labels.
### Label Binarization
Convert continuous labels to binary using threshold.
```python
from tdc.utils import binarize
# Binarize with threshold
binary_labels = binarize(y_continuous, threshold=5.0, order='ascending')
# order='ascending': values >= threshold become 1
# order='descending': values <= threshold become 1
```
### Label Units Conversion
Transform between measurement units.
```python
from tdc.chem_utils import label_transform
# Convert nM to pKd
y_pkd = label_transform(y_nM, from_unit='nM', to_unit='p')
# Convert μM to nM
y_nM = label_transform(y_uM, from_unit='uM', to_unit='nM')
```
**Available conversions:**
- Binding affinity: nM, μM, pKd, pKi, pIC50
- Log transformations
- Natural log conversions
### Label Meaning
Get interpretable descriptions for labels.
```python
# Get label mapping
label_map = data.get_label_map(name='DrugBank')
print(label_map)
# {0: 'No interaction', 1: 'Increased effect', 2: 'Decreased effect', ...}
```
### Data Balancing
Handle class imbalance via over/under-sampling.
```python
from tdc.utils import balance
# Oversample minority class
X_balanced, y_balanced = balance(X, y, method='oversample')
# Undersample majority class
X_balanced, y_balanced = balance(X, y, method='undersample')
```
### Graph Transformation for Pair Data
Convert paired data to graph representations.
```python
from tdc.utils import create_graph_from_pairs
# Create graph from drug-drug pairs
graph = create_graph_from_pairs(
pairs=ddi_pairs, # [(drug1, drug2, label), ...]
format='edge_list' # or 'PyG', 'DGL'
)
```
### Negative Sampling
Generate negative samples for binary tasks.
```python
from tdc.utils import negative_sample
# Generate negative samples for DTI
negative_pairs = negative_sample(
positive_pairs=known_interactions,
all_drugs=drug_list,
all_targets=target_list,
ratio=1.0 # Negative:positive ratio
)
```
**Use cases:**
- Drug-target interaction prediction
- Drug-drug interaction tasks
- Creating balanced datasets
### Entity Retrieval
Convert between database identifiers.
#### PubChem CID to SMILES
```python
from tdc.utils import cid2smiles
smiles = cid2smiles(2244) # Aspirin
# Returns: 'CC(=O)Oc1ccccc1C(=O)O'
```
#### UniProt ID to Amino Acid Sequence
```python
from tdc.utils import uniprot2seq
sequence = uniprot2seq('P12345')
# Returns: 'MVKVYAPASS...'
```
#### Batch Retrieval
```python
# Multiple CIDs
smiles_list = [cid2smiles(cid) for cid in [2244, 5090, 6323]]
# Multiple UniProt IDs
sequences = [uniprot2seq(uid) for uid in ['P12345', 'Q9Y5S9']]
```
## 4. Advanced Utilities
### Retrieve Dataset Names
```python
from tdc.utils import retrieve_dataset_names
# Get all datasets for a task
adme_datasets = retrieve_dataset_names('ADME')
dti_datasets = retrieve_dataset_names('DTI')
tox_datasets = retrieve_dataset_names('Tox')
print(f"ADME datasets: {adme_datasets}")
```
### Fuzzy Search
TDC supports fuzzy matching for dataset names:
```python
from tdc.single_pred import ADME
# These all work (typo-tolerant)
data = ADME(name='Caco2_Wang')
data = ADME(name='caco2_wang')
data = ADME(name='Caco2') # Partial match
```
### Data Format Options
```python
# Pandas DataFrame (default)
df = data.get_data(format='df')
# Dictionary
data_dict = data.get_data(format='dict')
# DeepPurpose format (for DeepPurpose library)
dp_format = data.get_data(format='DeepPurpose')
# PyG/DGL graphs (if applicable)
graphs = data.get_data(format='PyG')
```
### Data Loader Utilities
```python
from tdc.utils import create_fold
# Create cross-validation folds
folds = create_fold(data, fold=5, seed=42)
# Returns list of (train_idx, test_idx) tuples
# Iterate through folds
for i, (train_idx, test_idx) in enumerate(folds):
train_data = data.iloc[train_idx]
test_data = data.iloc[test_idx]
# Train and evaluate
```
## Common Workflows
### Workflow 1: Complete Data Pipeline
```python
from tdc.single_pred import ADME
from tdc import Evaluator
from tdc.chem_utils import MolConvert, MolFilter
# 1. Load data
data = ADME(name='Caco2_Wang')
# 2. Filter molecules
mol_filter = MolFilter(rules=['PAINS'])
filtered_data = data.get_data()
filtered_data = filtered_data[
filtered_data['Drug'].apply(lambda x: mol_filter([x]))
]
# 3. Split data
split = data.get_split(method='scaffold', seed=42)
train, valid, test = split['train'], split['valid'], split['test']
# 4. Convert to graph representations
converter = MolConvert(src='SMILES', dst='PyG')
train_graphs = converter(train['Drug'].tolist())
# 5. Train model (user implements)
# model.fit(train_graphs, train['Y'])
# 6. Evaluate
evaluator = Evaluator(name='MAE')
# score = evaluator(test['Y'], predictions)
```
### Workflow 2: Multi-Task Learning Preparation
```python
from tdc.benchmark_group import admet_group
from tdc.chem_utils import MolConvert
# Load benchmark group
group = admet_group(path='data/')
# Get multiple datasets
datasets = ['Caco2_Wang', 'HIA_Hou', 'Bioavailability_Ma']
all_data = {}
for dataset_name in datasets:
benchmark = group.get(dataset_name)
all_data[dataset_name] = benchmark
# Prepare for multi-task learning
converter = MolConvert(src='SMILES', dst='ECFP')
# Process each dataset...
```
### Workflow 3: DTI Cold Split Evaluation
```python
from tdc.multi_pred import DTI
from tdc import Evaluator
# Load DTI data
data = DTI(name='BindingDB_Kd')
# Cold drug split
split = data.get_split(method='cold_drug', seed=42)
train, test = split['train'], split['test']
# Verify no drug overlap
train_drugs = set(train['Drug_ID'])
test_drugs = set(test['Drug_ID'])
assert len(train_drugs & test_drugs) == 0, "Drug leakage detected!"
# Train and evaluate
# model.fit(train)
evaluator = Evaluator(name='RMSE')
# score = evaluator(test['Y'], predictions)
```
## Best Practices
1. **Always use meaningful splits** - Use scaffold or cold splits for realistic evaluation
2. **Multiple seeds** - Run experiments with multiple seeds for robust results
3. **Appropriate metrics** - Choose metrics that match your task and dataset characteristics
4. **Data filtering** - Remove PAINS and non-drug-like molecules before training
5. **Format conversion** - Convert molecules to appropriate format for your model
6. **Batch processing** - Use batch operations for efficiency with large datasets
## Performance Tips
- Convert molecules in batch mode for faster processing
- Cache converted representations to avoid recomputation
- Use appropriate data formats for your framework (PyG, DGL, etc.)
- Filter data early in the pipeline to reduce computation
## References
- TDC Documentation: https://tdc.readthedocs.io
- Data Functions: https://tdcommons.ai/fct_overview/
- Evaluation Metrics: https://tdcommons.ai/functions/model_eval/
- Data Splits: https://tdcommons.ai/functions/data_split/