7.5 KiB
7.5 KiB
File I/O and Data Formats
Overview
PyOpenMS supports multiple mass spectrometry file formats for reading and writing. This guide covers file handling strategies and format-specific operations.
Supported Formats
Spectrum Data Formats
- mzML: Standard XML-based format for mass spectrometry data
- mzXML: Earlier XML-based format
- mzData: XML format (deprecated but supported)
Identification Formats
- idXML: OpenMS native identification format
- mzIdentML: Standard XML format for identification data
- pepXML: X! Tandem format
- protXML: Protein identification format
Feature and Quantitation Formats
- featureXML: OpenMS format for detected features
- consensusXML: Format for consensus features across samples
- mzTab: Tab-delimited format for reporting
Sequence and Library Formats
- FASTA: Protein/peptide sequences
- TraML: Transition lists for targeted experiments
Reading mzML Files
In-Memory Loading
Load entire file into memory (suitable for smaller files):
import pyopenms as ms
# Create experiment container
exp = ms.MSExperiment()
# Load file
ms.MzMLFile().load("sample.mzML", exp)
# Access data
print(f"Spectra: {exp.getNrSpectra()}")
print(f"Chromatograms: {exp.getNrChromatograms()}")
Indexed Access
Efficient random access for large files:
# Create indexed access
indexed_mzml = ms.IndexedMzMLFileLoader()
indexed_mzml.load("large_file.mzML")
# Get specific spectrum by index
spec = indexed_mzml.getSpectrumById(100)
# Access by native ID
spec = indexed_mzml.getSpectrumByNativeId("scan=5000")
Streaming Access
Memory-efficient processing for very large files:
# Define consumer function
class SpectrumProcessor(ms.MSExperimentConsumer):
def __init__(self):
super().__init__()
self.count = 0
def consumeSpectrum(self, spec):
# Process spectrum
if spec.getMSLevel() == 2:
self.count += 1
# Stream file
consumer = SpectrumProcessor()
ms.MzMLFile().transform("large.mzML", consumer)
print(f"Processed {consumer.count} MS2 spectra")
Cached Access
Balance between memory usage and speed:
# Use on-disk caching
options = ms.CachedmzML()
options.setMetaDataOnly(False)
exp = ms.MSExperiment()
ms.CachedmzMLHandler().load("sample.mzML", exp, options)
Writing mzML Files
Basic Writing
# Create or modify experiment
exp = ms.MSExperiment()
# ... add spectra ...
# Write to file
ms.MzMLFile().store("output.mzML", exp)
Compression Options
# Configure compression
file_handler = ms.MzMLFile()
options = ms.PeakFileOptions()
options.setCompression(True) # Enable compression
file_handler.setOptions(options)
file_handler.store("compressed.mzML", exp)
Reading Identification Data
idXML Format
# Load identification results
protein_ids = []
peptide_ids = []
ms.IdXMLFile().load("identifications.idXML", protein_ids, peptide_ids)
# Access peptide identifications
for peptide_id in peptide_ids:
print(f"RT: {peptide_id.getRT()}")
print(f"MZ: {peptide_id.getMZ()}")
# Get peptide hits
for hit in peptide_id.getHits():
print(f" Sequence: {hit.getSequence().toString()}")
print(f" Score: {hit.getScore()}")
print(f" Charge: {hit.getCharge()}")
mzIdentML Format
# Read mzIdentML
protein_ids = []
peptide_ids = []
ms.MzIdentMLFile().load("results.mzid", protein_ids, peptide_ids)
pepXML Format
# Load pepXML
protein_ids = []
peptide_ids = []
ms.PepXMLFile().load("results.pep.xml", protein_ids, peptide_ids)
Reading Feature Data
featureXML
# Load features
feature_map = ms.FeatureMap()
ms.FeatureXMLFile().load("features.featureXML", feature_map)
# Access features
for feature in feature_map:
print(f"RT: {feature.getRT()}")
print(f"MZ: {feature.getMZ()}")
print(f"Intensity: {feature.getIntensity()}")
print(f"Quality: {feature.getOverallQuality()}")
consensusXML
# Load consensus features
consensus_map = ms.ConsensusMap()
ms.ConsensusXMLFile().load("consensus.consensusXML", consensus_map)
# Access consensus features
for consensus_feature in consensus_map:
print(f"RT: {consensus_feature.getRT()}")
print(f"MZ: {consensus_feature.getMZ()}")
# Get feature handles (sub-features from different maps)
for handle in consensus_feature.getFeatureList():
map_index = handle.getMapIndex()
intensity = handle.getIntensity()
print(f" Map {map_index}: {intensity}")
Reading FASTA Files
# Load protein sequences
fasta_entries = []
ms.FASTAFile().load("database.fasta", fasta_entries)
for entry in fasta_entries:
print(f"Identifier: {entry.identifier}")
print(f"Description: {entry.description}")
print(f"Sequence: {entry.sequence}")
Reading TraML Files
# Load transition lists for targeted experiments
targeted_exp = ms.TargetedExperiment()
ms.TraMLFile().load("transitions.TraML", targeted_exp)
# Access transitions
for transition in targeted_exp.getTransitions():
print(f"Precursor MZ: {transition.getPrecursorMZ()}")
print(f"Product MZ: {transition.getProductMZ()}")
Writing mzTab Files
# Create mzTab for reporting
mztab = ms.MzTab()
# Add metadata
metadata = mztab.getMetaData()
metadata.mz_tab_version.set("1.0.0")
metadata.title.set("Proteomics Analysis Results")
# Add protein data
protein_section = mztab.getProteinSectionRows()
# ... populate protein data ...
# Write to file
ms.MzTabFile().store("report.mzTab", mztab)
Format Conversion
mzXML to mzML
# Read mzXML
exp = ms.MSExperiment()
ms.MzXMLFile().load("data.mzXML", exp)
# Write as mzML
ms.MzMLFile().store("data.mzML", exp)
Extract Chromatograms from mzML
# Load experiment
exp = ms.MSExperiment()
ms.MzMLFile().load("data.mzML", exp)
# Extract specific chromatogram
for chrom in exp.getChromatograms():
if chrom.getNativeID() == "TIC":
rt, intensity = chrom.get_peaks()
print(f"TIC has {len(rt)} data points")
File Metadata
Access mzML Metadata
# Load file
exp = ms.MSExperiment()
ms.MzMLFile().load("sample.mzML", exp)
# Get experimental settings
exp_settings = exp.getExperimentalSettings()
# Instrument info
instrument = exp_settings.getInstrument()
print(f"Instrument: {instrument.getName()}")
print(f"Model: {instrument.getModel()}")
# Sample info
sample = exp_settings.getSample()
print(f"Sample name: {sample.getName()}")
# Source files
for source_file in exp_settings.getSourceFiles():
print(f"Source: {source_file.getNameOfFile()}")
Best Practices
Memory Management
For large files:
- Use indexed or streaming access instead of full in-memory loading
- Process data in chunks
- Clear data structures when no longer needed
# Good for large files
indexed_mzml = ms.IndexedMzMLFileLoader()
indexed_mzml.load("huge_file.mzML")
# Process spectra one at a time
for i in range(indexed_mzml.getNrSpectra()):
spec = indexed_mzml.getSpectrumById(i)
# Process spectrum
# Spectrum automatically cleaned up after processing
Error Handling
try:
exp = ms.MSExperiment()
ms.MzMLFile().load("data.mzML", exp)
except Exception as e:
print(f"Failed to load file: {e}")
File Validation
# Check if file exists and is readable
import os
if os.path.exists("data.mzML") and os.path.isfile("data.mzML"):
exp = ms.MSExperiment()
ms.MzMLFile().load("data.mzML", exp)
else:
print("File not found")