266 lines
6.9 KiB
Markdown
266 lines
6.9 KiB
Markdown
# Pymoo Test Problems Reference
|
|
|
|
Comprehensive reference for benchmark optimization problems in pymoo.
|
|
|
|
## Single-Objective Test Problems
|
|
|
|
### Ackley Function
|
|
**Characteristics:**
|
|
- Highly multimodal
|
|
- Many local optima
|
|
- Tests algorithm's ability to escape local minima
|
|
- Continuous variables
|
|
|
|
### Griewank Function
|
|
**Characteristics:**
|
|
- Multimodal with regularly distributed local minima
|
|
- Product term introduces interdependencies between variables
|
|
- Global minimum at origin
|
|
|
|
### Rastrigin Function
|
|
**Characteristics:**
|
|
- Highly multimodal with regularly spaced local minima
|
|
- Challenging for gradient-based methods
|
|
- Tests global search capability
|
|
|
|
### Rosenbrock Function
|
|
**Characteristics:**
|
|
- Unimodal but narrow valley to global optimum
|
|
- Tests algorithm's convergence in difficult landscape
|
|
- Classic benchmark for continuous optimization
|
|
|
|
### Zakharov Function
|
|
**Characteristics:**
|
|
- Unimodal
|
|
- Single global minimum
|
|
- Tests basic convergence capability
|
|
|
|
## Multi-Objective Test Problems (2-3 objectives)
|
|
|
|
### ZDT Test Suite
|
|
**Purpose:** Standard benchmark for bi-objective optimization
|
|
**Construction:** f₂(x) = g(x) · h(f₁(x), g(x)) where g(x) = 1 at Pareto-optimal solutions
|
|
|
|
#### ZDT1
|
|
- **Variables:** 30 continuous
|
|
- **Bounds:** [0, 1]
|
|
- **Pareto front:** Convex
|
|
- **Purpose:** Basic convergence and diversity test
|
|
|
|
#### ZDT2
|
|
- **Variables:** 30 continuous
|
|
- **Bounds:** [0, 1]
|
|
- **Pareto front:** Non-convex (concave)
|
|
- **Purpose:** Tests handling of non-convex fronts
|
|
|
|
#### ZDT3
|
|
- **Variables:** 30 continuous
|
|
- **Bounds:** [0, 1]
|
|
- **Pareto front:** Disconnected (5 separate regions)
|
|
- **Purpose:** Tests diversity maintenance across discontinuous front
|
|
|
|
#### ZDT4
|
|
- **Variables:** 10 continuous (x₁ ∈ [0,1], x₂₋₁₀ ∈ [-10,10])
|
|
- **Pareto front:** Convex
|
|
- **Difficulty:** 21⁹ local Pareto fronts
|
|
- **Purpose:** Tests global search with many local optima
|
|
|
|
#### ZDT5
|
|
- **Variables:** 11 discrete (bitstring)
|
|
- **Encoding:** x₁ uses 30 bits, x₂₋₁₁ use 5 bits each
|
|
- **Pareto front:** Convex
|
|
- **Purpose:** Tests discrete optimization and deceptive landscapes
|
|
|
|
#### ZDT6
|
|
- **Variables:** 10 continuous
|
|
- **Bounds:** [0, 1]
|
|
- **Pareto front:** Non-convex with non-uniform density
|
|
- **Purpose:** Tests handling of biased solution distributions
|
|
|
|
**Usage:**
|
|
```python
|
|
from pymoo.problems.multi import ZDT1, ZDT2, ZDT3, ZDT4, ZDT5, ZDT6
|
|
problem = ZDT1() # or ZDT2(), ZDT3(), etc.
|
|
```
|
|
|
|
### BNH (Binh and Korn)
|
|
**Characteristics:**
|
|
- 2 objectives
|
|
- 2 variables
|
|
- Constrained problem
|
|
- Tests constraint handling in multi-objective context
|
|
|
|
### OSY (Osyczka and Kundu)
|
|
**Characteristics:**
|
|
- 6 objectives
|
|
- 6 variables
|
|
- Multiple constraints
|
|
- Real-world inspired
|
|
|
|
### TNK (Tanaka)
|
|
**Characteristics:**
|
|
- 2 objectives
|
|
- 2 variables
|
|
- Disconnected feasible region
|
|
- Tests handling of disjoint search spaces
|
|
|
|
### Truss2D
|
|
**Characteristics:**
|
|
- Structural engineering problem
|
|
- Bi-objective (weight vs displacement)
|
|
- Practical application test
|
|
|
|
### Welded Beam
|
|
**Characteristics:**
|
|
- Engineering design problem
|
|
- Multiple constraints
|
|
- Practical optimization scenario
|
|
|
|
### Omni-test
|
|
**Characteristics:**
|
|
- Configurable test problem
|
|
- Various difficulty levels
|
|
- Systematic testing
|
|
|
|
### SYM-PART
|
|
**Characteristics:**
|
|
- Symmetric problem structure
|
|
- Tests specific algorithmic behaviors
|
|
|
|
## Many-Objective Test Problems (4+ objectives)
|
|
|
|
### DTLZ Test Suite
|
|
**Purpose:** Scalable many-objective benchmarks
|
|
**Objectives:** Configurable (typically 3-15)
|
|
**Variables:** Scalable
|
|
|
|
#### DTLZ1
|
|
- **Pareto front:** Linear (hyperplane)
|
|
- **Difficulty:** 11^k local Pareto fronts
|
|
- **Purpose:** Tests convergence with many local optima
|
|
|
|
#### DTLZ2
|
|
- **Pareto front:** Spherical (concave)
|
|
- **Difficulty:** Straightforward convergence
|
|
- **Purpose:** Basic many-objective diversity test
|
|
|
|
#### DTLZ3
|
|
- **Pareto front:** Spherical
|
|
- **Difficulty:** 3^k local Pareto fronts
|
|
- **Purpose:** Combines DTLZ1's multimodality with DTLZ2's geometry
|
|
|
|
#### DTLZ4
|
|
- **Pareto front:** Spherical with biased density
|
|
- **Difficulty:** Non-uniform solution distribution
|
|
- **Purpose:** Tests diversity maintenance with bias
|
|
|
|
#### DTLZ5
|
|
- **Pareto front:** Degenerate (curve in M-dimensional space)
|
|
- **Purpose:** Tests handling of degenerate fronts
|
|
|
|
#### DTLZ6
|
|
- **Pareto front:** Degenerate curve
|
|
- **Difficulty:** Harder convergence than DTLZ5
|
|
- **Purpose:** Challenging degenerate front
|
|
|
|
#### DTLZ7
|
|
- **Pareto front:** Disconnected regions
|
|
- **Difficulty:** 2^(M-1) disconnected regions
|
|
- **Purpose:** Tests diversity across disconnected fronts
|
|
|
|
**Usage:**
|
|
```python
|
|
from pymoo.problems.many import DTLZ1, DTLZ2
|
|
problem = DTLZ1(n_var=7, n_obj=3) # 7 variables, 3 objectives
|
|
```
|
|
|
|
### WFG Test Suite
|
|
**Purpose:** Walking Fish Group scalable benchmarks
|
|
**Features:** More complex than DTLZ, various front shapes and difficulties
|
|
|
|
**Variants:** WFG1-WFG9 with different characteristics
|
|
- Non-separable
|
|
- Deceptive
|
|
- Multimodal
|
|
- Biased
|
|
- Scaled fronts
|
|
|
|
## Constrained Multi-Objective Problems
|
|
|
|
### MW Test Suite
|
|
**Purpose:** Multi-objective problems with various constraint types
|
|
**Features:** Different constraint difficulty levels
|
|
|
|
### DAS-CMOP
|
|
**Purpose:** Difficulty-adjustable and scalable constrained multi-objective problems
|
|
**Features:** Tunable constraint difficulty
|
|
|
|
### MODAct
|
|
**Purpose:** Multi-objective optimization with active constraints
|
|
**Features:** Realistic constraint scenarios
|
|
|
|
## Dynamic Multi-Objective Problems
|
|
|
|
### DF Test Suite
|
|
**Purpose:** CEC2018 Competition dynamic multi-objective benchmarks
|
|
**Features:**
|
|
- Time-varying objectives
|
|
- Changing Pareto fronts
|
|
- Tests algorithm adaptability
|
|
|
|
**Variants:** DF1-DF14 with different dynamics
|
|
|
|
## Custom Problem Definition
|
|
|
|
Define custom problems by extending base classes:
|
|
|
|
```python
|
|
from pymoo.core.problem import ElementwiseProblem
|
|
import numpy as np
|
|
|
|
class MyProblem(ElementwiseProblem):
|
|
def __init__(self):
|
|
super().__init__(
|
|
n_var=2, # number of variables
|
|
n_obj=2, # number of objectives
|
|
n_ieq_constr=0, # inequality constraints
|
|
n_eq_constr=0, # equality constraints
|
|
xl=np.array([0, 0]), # lower bounds
|
|
xu=np.array([1, 1]) # upper bounds
|
|
)
|
|
|
|
def _evaluate(self, x, out, *args, **kwargs):
|
|
# Define objectives
|
|
f1 = x[0]**2 + x[1]**2
|
|
f2 = (x[0]-1)**2 + x[1]**2
|
|
|
|
out["F"] = [f1, f2]
|
|
|
|
# Optional: constraints
|
|
# out["G"] = constraint_values # <= 0
|
|
# out["H"] = equality_constraints # == 0
|
|
```
|
|
|
|
## Problem Selection Guidelines
|
|
|
|
**For algorithm development:**
|
|
- Simple convergence: DTLZ2, ZDT1
|
|
- Multimodal: ZDT4, DTLZ1, DTLZ3
|
|
- Non-convex: ZDT2
|
|
- Disconnected: ZDT3, DTLZ7
|
|
|
|
**For comprehensive testing:**
|
|
- ZDT suite for bi-objective
|
|
- DTLZ suite for many-objective
|
|
- WFG for complex landscapes
|
|
- MW/DAS-CMOP for constraints
|
|
|
|
**For real-world validation:**
|
|
- Engineering problems (Truss2D, Welded Beam)
|
|
- Match problem characteristics to application domain
|
|
|
|
**Variable types:**
|
|
- Continuous: Most problems
|
|
- Discrete: ZDT5
|
|
- Mixed: Define custom problem
|