Files
2025-11-30 08:30:10 +08:00

266 lines
6.9 KiB
Markdown

# Pymoo Test Problems Reference
Comprehensive reference for benchmark optimization problems in pymoo.
## Single-Objective Test Problems
### Ackley Function
**Characteristics:**
- Highly multimodal
- Many local optima
- Tests algorithm's ability to escape local minima
- Continuous variables
### Griewank Function
**Characteristics:**
- Multimodal with regularly distributed local minima
- Product term introduces interdependencies between variables
- Global minimum at origin
### Rastrigin Function
**Characteristics:**
- Highly multimodal with regularly spaced local minima
- Challenging for gradient-based methods
- Tests global search capability
### Rosenbrock Function
**Characteristics:**
- Unimodal but narrow valley to global optimum
- Tests algorithm's convergence in difficult landscape
- Classic benchmark for continuous optimization
### Zakharov Function
**Characteristics:**
- Unimodal
- Single global minimum
- Tests basic convergence capability
## Multi-Objective Test Problems (2-3 objectives)
### ZDT Test Suite
**Purpose:** Standard benchmark for bi-objective optimization
**Construction:** f₂(x) = g(x) · h(f₁(x), g(x)) where g(x) = 1 at Pareto-optimal solutions
#### ZDT1
- **Variables:** 30 continuous
- **Bounds:** [0, 1]
- **Pareto front:** Convex
- **Purpose:** Basic convergence and diversity test
#### ZDT2
- **Variables:** 30 continuous
- **Bounds:** [0, 1]
- **Pareto front:** Non-convex (concave)
- **Purpose:** Tests handling of non-convex fronts
#### ZDT3
- **Variables:** 30 continuous
- **Bounds:** [0, 1]
- **Pareto front:** Disconnected (5 separate regions)
- **Purpose:** Tests diversity maintenance across discontinuous front
#### ZDT4
- **Variables:** 10 continuous (x₁ ∈ [0,1], x₂₋₁₀ ∈ [-10,10])
- **Pareto front:** Convex
- **Difficulty:** 21⁹ local Pareto fronts
- **Purpose:** Tests global search with many local optima
#### ZDT5
- **Variables:** 11 discrete (bitstring)
- **Encoding:** x₁ uses 30 bits, x₂₋₁₁ use 5 bits each
- **Pareto front:** Convex
- **Purpose:** Tests discrete optimization and deceptive landscapes
#### ZDT6
- **Variables:** 10 continuous
- **Bounds:** [0, 1]
- **Pareto front:** Non-convex with non-uniform density
- **Purpose:** Tests handling of biased solution distributions
**Usage:**
```python
from pymoo.problems.multi import ZDT1, ZDT2, ZDT3, ZDT4, ZDT5, ZDT6
problem = ZDT1() # or ZDT2(), ZDT3(), etc.
```
### BNH (Binh and Korn)
**Characteristics:**
- 2 objectives
- 2 variables
- Constrained problem
- Tests constraint handling in multi-objective context
### OSY (Osyczka and Kundu)
**Characteristics:**
- 6 objectives
- 6 variables
- Multiple constraints
- Real-world inspired
### TNK (Tanaka)
**Characteristics:**
- 2 objectives
- 2 variables
- Disconnected feasible region
- Tests handling of disjoint search spaces
### Truss2D
**Characteristics:**
- Structural engineering problem
- Bi-objective (weight vs displacement)
- Practical application test
### Welded Beam
**Characteristics:**
- Engineering design problem
- Multiple constraints
- Practical optimization scenario
### Omni-test
**Characteristics:**
- Configurable test problem
- Various difficulty levels
- Systematic testing
### SYM-PART
**Characteristics:**
- Symmetric problem structure
- Tests specific algorithmic behaviors
## Many-Objective Test Problems (4+ objectives)
### DTLZ Test Suite
**Purpose:** Scalable many-objective benchmarks
**Objectives:** Configurable (typically 3-15)
**Variables:** Scalable
#### DTLZ1
- **Pareto front:** Linear (hyperplane)
- **Difficulty:** 11^k local Pareto fronts
- **Purpose:** Tests convergence with many local optima
#### DTLZ2
- **Pareto front:** Spherical (concave)
- **Difficulty:** Straightforward convergence
- **Purpose:** Basic many-objective diversity test
#### DTLZ3
- **Pareto front:** Spherical
- **Difficulty:** 3^k local Pareto fronts
- **Purpose:** Combines DTLZ1's multimodality with DTLZ2's geometry
#### DTLZ4
- **Pareto front:** Spherical with biased density
- **Difficulty:** Non-uniform solution distribution
- **Purpose:** Tests diversity maintenance with bias
#### DTLZ5
- **Pareto front:** Degenerate (curve in M-dimensional space)
- **Purpose:** Tests handling of degenerate fronts
#### DTLZ6
- **Pareto front:** Degenerate curve
- **Difficulty:** Harder convergence than DTLZ5
- **Purpose:** Challenging degenerate front
#### DTLZ7
- **Pareto front:** Disconnected regions
- **Difficulty:** 2^(M-1) disconnected regions
- **Purpose:** Tests diversity across disconnected fronts
**Usage:**
```python
from pymoo.problems.many import DTLZ1, DTLZ2
problem = DTLZ1(n_var=7, n_obj=3) # 7 variables, 3 objectives
```
### WFG Test Suite
**Purpose:** Walking Fish Group scalable benchmarks
**Features:** More complex than DTLZ, various front shapes and difficulties
**Variants:** WFG1-WFG9 with different characteristics
- Non-separable
- Deceptive
- Multimodal
- Biased
- Scaled fronts
## Constrained Multi-Objective Problems
### MW Test Suite
**Purpose:** Multi-objective problems with various constraint types
**Features:** Different constraint difficulty levels
### DAS-CMOP
**Purpose:** Difficulty-adjustable and scalable constrained multi-objective problems
**Features:** Tunable constraint difficulty
### MODAct
**Purpose:** Multi-objective optimization with active constraints
**Features:** Realistic constraint scenarios
## Dynamic Multi-Objective Problems
### DF Test Suite
**Purpose:** CEC2018 Competition dynamic multi-objective benchmarks
**Features:**
- Time-varying objectives
- Changing Pareto fronts
- Tests algorithm adaptability
**Variants:** DF1-DF14 with different dynamics
## Custom Problem Definition
Define custom problems by extending base classes:
```python
from pymoo.core.problem import ElementwiseProblem
import numpy as np
class MyProblem(ElementwiseProblem):
def __init__(self):
super().__init__(
n_var=2, # number of variables
n_obj=2, # number of objectives
n_ieq_constr=0, # inequality constraints
n_eq_constr=0, # equality constraints
xl=np.array([0, 0]), # lower bounds
xu=np.array([1, 1]) # upper bounds
)
def _evaluate(self, x, out, *args, **kwargs):
# Define objectives
f1 = x[0]**2 + x[1]**2
f2 = (x[0]-1)**2 + x[1]**2
out["F"] = [f1, f2]
# Optional: constraints
# out["G"] = constraint_values # <= 0
# out["H"] = equality_constraints # == 0
```
## Problem Selection Guidelines
**For algorithm development:**
- Simple convergence: DTLZ2, ZDT1
- Multimodal: ZDT4, DTLZ1, DTLZ3
- Non-convex: ZDT2
- Disconnected: ZDT3, DTLZ7
**For comprehensive testing:**
- ZDT suite for bi-objective
- DTLZ suite for many-objective
- WFG for complex landscapes
- MW/DAS-CMOP for constraints
**For real-world validation:**
- Engineering problems (Truss2D, Welded Beam)
- Match problem characteristics to application domain
**Variable types:**
- Continuous: Most problems
- Discrete: ZDT5
- Mixed: Define custom problem