507 lines
14 KiB
Markdown
507 lines
14 KiB
Markdown
# EEG Analysis and Microstates
|
||
|
||
## Overview
|
||
|
||
Analyze electroencephalography (EEG) signals for frequency band power, channel quality assessment, source localization, and microstate identification. NeuroKit2 integrates with MNE-Python for comprehensive EEG processing workflows.
|
||
|
||
## Core EEG Functions
|
||
|
||
### eeg_power()
|
||
|
||
Compute power across standard frequency bands for specified channels.
|
||
|
||
```python
|
||
power = nk.eeg_power(eeg_data, sampling_rate=250, channels=['Fz', 'Cz', 'Pz'],
|
||
frequency_bands={'Delta': (0.5, 4),
|
||
'Theta': (4, 8),
|
||
'Alpha': (8, 13),
|
||
'Beta': (13, 30),
|
||
'Gamma': (30, 45)})
|
||
```
|
||
|
||
**Standard frequency bands:**
|
||
- **Delta (0.5-4 Hz)**: Deep sleep, unconscious processes
|
||
- **Theta (4-8 Hz)**: Drowsiness, meditation, memory encoding
|
||
- **Alpha (8-13 Hz)**: Relaxed wakefulness, eyes closed
|
||
- **Beta (13-30 Hz)**: Active thinking, focus, anxiety
|
||
- **Gamma (30-45 Hz)**: Cognitive processing, binding
|
||
|
||
**Returns:**
|
||
- DataFrame with power values for each channel × frequency band combination
|
||
- Columns: `Channel_Band` (e.g., 'Fz_Alpha', 'Cz_Beta')
|
||
|
||
**Use cases:**
|
||
- Resting state analysis
|
||
- Cognitive state classification
|
||
- Sleep staging
|
||
- Meditation or neurofeedback monitoring
|
||
|
||
### eeg_badchannels()
|
||
|
||
Identify problematic channels using statistical outlier detection.
|
||
|
||
```python
|
||
bad_channels = nk.eeg_badchannels(eeg_data, sampling_rate=250, bad_threshold=2)
|
||
```
|
||
|
||
**Detection methods:**
|
||
- Standard deviation outliers across channels
|
||
- Correlation with other channels
|
||
- Flat or dead channels
|
||
- Channels with excessive noise
|
||
|
||
**Parameters:**
|
||
- `bad_threshold`: Z-score threshold for outlier detection (default: 2)
|
||
|
||
**Returns:**
|
||
- List of channel names identified as problematic
|
||
|
||
**Use case:**
|
||
- Quality control before analysis
|
||
- Automatic bad channel rejection
|
||
- Interpolation or exclusion decisions
|
||
|
||
### eeg_rereference()
|
||
|
||
Re-express voltage measurements relative to different reference points.
|
||
|
||
```python
|
||
rereferenced = nk.eeg_rereference(eeg_data, reference='average', robust=False)
|
||
```
|
||
|
||
**Reference types:**
|
||
- `'average'`: Average reference (mean of all electrodes)
|
||
- `'REST'`: Reference Electrode Standardization Technique
|
||
- `'bipolar'`: Differential recording between electrode pairs
|
||
- Specific channel name: Use single electrode as reference
|
||
|
||
**Common references:**
|
||
- **Average reference**: Most common for high-density EEG
|
||
- **Linked mastoids**: Traditional clinical EEG
|
||
- **Vertex (Cz)**: Sometimes used in ERP research
|
||
- **REST**: Approximates infinity reference
|
||
|
||
**Returns:**
|
||
- Re-referenced EEG data
|
||
|
||
### eeg_gfp()
|
||
|
||
Compute Global Field Power - the standard deviation of all electrodes at each time point.
|
||
|
||
```python
|
||
gfp = nk.eeg_gfp(eeg_data)
|
||
```
|
||
|
||
**Interpretation:**
|
||
- High GFP: Strong, synchronized brain activity across regions
|
||
- Low GFP: Weak or desynchronized activity
|
||
- GFP peaks: Points of stable topography, used for microstate detection
|
||
|
||
**Use cases:**
|
||
- Identify periods of stable topographic patterns
|
||
- Select time points for microstate analysis
|
||
- Event-related potential (ERP) visualization
|
||
|
||
### eeg_diss()
|
||
|
||
Measure topographic dissimilarity between electric field configurations.
|
||
|
||
```python
|
||
dissimilarity = nk.eeg_diss(eeg_data1, eeg_data2, method='gfp')
|
||
```
|
||
|
||
**Methods:**
|
||
- GFP-based: Normalized difference
|
||
- Spatial correlation
|
||
- Cosine distance
|
||
|
||
**Use case:**
|
||
- Compare topographies between conditions
|
||
- Microstate transition analysis
|
||
- Template matching
|
||
|
||
## Source Localization
|
||
|
||
### eeg_source()
|
||
|
||
Perform source reconstruction to estimate brain-level activity from scalp recordings.
|
||
|
||
```python
|
||
sources = nk.eeg_source(eeg_data, method='sLORETA')
|
||
```
|
||
|
||
**Methods:**
|
||
- `'sLORETA'`: Standardized Low-Resolution Electromagnetic Tomography
|
||
- Zero localization error for point sources
|
||
- Good spatial resolution
|
||
- `'MNE'`: Minimum Norm Estimate
|
||
- Fast, well-established
|
||
- Bias toward superficial sources
|
||
- `'dSPM'`: Dynamic Statistical Parametric Mapping
|
||
- Normalized MNE
|
||
- `'eLORETA'`: Exact LORETA
|
||
- Improved localization accuracy
|
||
|
||
**Requirements:**
|
||
- Forward model (lead field matrix)
|
||
- Co-registered electrode positions
|
||
- Head model (boundary element or spherical)
|
||
|
||
**Returns:**
|
||
- Source space activity estimates
|
||
|
||
### eeg_source_extract()
|
||
|
||
Extract activity from specific anatomical brain regions.
|
||
|
||
```python
|
||
regional_activity = nk.eeg_source_extract(sources, regions=['PFC', 'MTL', 'Parietal'])
|
||
```
|
||
|
||
**Region options:**
|
||
- Standard atlases: Desikan-Killiany, Destrieux, AAL
|
||
- Custom ROIs
|
||
- Brodmann areas
|
||
|
||
**Returns:**
|
||
- Time series for each region
|
||
- Averaged or principal component across voxels
|
||
|
||
**Use cases:**
|
||
- Region-of-interest analysis
|
||
- Functional connectivity
|
||
- Source-level statistics
|
||
|
||
## Microstate Analysis
|
||
|
||
Microstates are brief (80-120 ms) periods of stable brain topography, representing coordinated neural networks. Typically 4-7 microstate classes (often labeled A, B, C, D) with distinct functions.
|
||
|
||
### microstates_segment()
|
||
|
||
Identify and extract microstates using clustering algorithms.
|
||
|
||
```python
|
||
microstates = nk.microstates_segment(eeg_data, n_microstates=4, sampling_rate=250,
|
||
method='kmod', normalize=True)
|
||
```
|
||
|
||
**Methods:**
|
||
- `'kmod'` (default): Modified k-means optimized for EEG topographies
|
||
- Polarity-invariant clustering
|
||
- Most common in microstate literature
|
||
- `'kmeans'`: Standard k-means clustering
|
||
- `'kmedoids'`: K-medoids (more robust to outliers)
|
||
- `'pca'`: Principal component analysis
|
||
- `'ica'`: Independent component analysis
|
||
- `'aahc'`: Atomize and agglomerate hierarchical clustering
|
||
|
||
**Parameters:**
|
||
- `n_microstates`: Number of microstate classes (typically 4-7)
|
||
- `normalize`: Normalize topographies (recommended: True)
|
||
- `n_inits`: Number of random initializations (increase for stability)
|
||
|
||
**Returns:**
|
||
- Dictionary with:
|
||
- `'maps'`: Microstate template topographies
|
||
- `'labels'`: Microstate label at each time point
|
||
- `'gfp'`: Global field power
|
||
- `'gev'`: Global explained variance
|
||
|
||
### microstates_findnumber()
|
||
|
||
Estimate the optimal number of microstates.
|
||
|
||
```python
|
||
optimal_k = nk.microstates_findnumber(eeg_data, show=True)
|
||
```
|
||
|
||
**Criteria:**
|
||
- **Global Explained Variance (GEV)**: Percentage of variance explained
|
||
- Elbow method: find "knee" in GEV curve
|
||
- Typically 70-80% GEV achieved
|
||
- **Krzanowski-Lai (KL) Criterion**: Statistical measure balancing fit and parsimony
|
||
- Maximum KL indicates optimal k
|
||
|
||
**Typical range:** 4-7 microstates
|
||
- 4 microstates: Classic A, B, C, D states
|
||
- 5-7 microstates: Finer-grained decomposition
|
||
|
||
### microstates_classify()
|
||
|
||
Reorder microstates based on anterior-posterior and left-right channel values.
|
||
|
||
```python
|
||
classified = nk.microstates_classify(microstates)
|
||
```
|
||
|
||
**Purpose:**
|
||
- Standardize microstate labels across subjects
|
||
- Match conventional A, B, C, D topographies:
|
||
- **A**: Left-right orientation, parieto-occipital
|
||
- **B**: Right-left orientation, fronto-temporal
|
||
- **C**: Anterior-posterior orientation, frontal-central
|
||
- **D**: Fronto-central, anterior-posterior (inverse of C)
|
||
|
||
**Returns:**
|
||
- Reordered microstate maps and labels
|
||
|
||
### microstates_clean()
|
||
|
||
Preprocess EEG data for microstate extraction.
|
||
|
||
```python
|
||
cleaned_eeg = nk.microstates_clean(eeg_data, sampling_rate=250)
|
||
```
|
||
|
||
**Preprocessing steps:**
|
||
- Bandpass filtering (typically 2-20 Hz)
|
||
- Artifact rejection
|
||
- Bad channel interpolation
|
||
- Re-referencing to average
|
||
|
||
**Rationale:**
|
||
- Microstates reflect large-scale network activity
|
||
- High-frequency and low-frequency artifacts can distort topographies
|
||
|
||
### microstates_peaks()
|
||
|
||
Identify GFP peaks for microstate analysis.
|
||
|
||
```python
|
||
peak_indices = nk.microstates_peaks(eeg_data, sampling_rate=250)
|
||
```
|
||
|
||
**Purpose:**
|
||
- Microstates typically analyzed at GFP peaks
|
||
- Peaks represent moments of maximal, stable topographic activity
|
||
- Reduces computational load and noise sensitivity
|
||
|
||
**Returns:**
|
||
- Indices of GFP local maxima
|
||
|
||
### microstates_static()
|
||
|
||
Compute temporal properties of individual microstates.
|
||
|
||
```python
|
||
static_metrics = nk.microstates_static(microstates)
|
||
```
|
||
|
||
**Metrics:**
|
||
- **Duration (ms)**: Mean time spent in each microstate
|
||
- Typical: 80-120 ms
|
||
- Reflects stability and persistence
|
||
- **Occurrence (per second)**: Frequency of microstate appearances
|
||
- How often each state is entered
|
||
- **Coverage (%)**: Percentage of total time in each microstate
|
||
- Relative dominance
|
||
- **Global Explained Variance (GEV)**: Variance explained by each class
|
||
- Quality of template fit
|
||
|
||
**Returns:**
|
||
- DataFrame with metrics for each microstate class
|
||
|
||
**Interpretation:**
|
||
- Changes in duration: altered network stability
|
||
- Changes in occurrence: shifting state dynamics
|
||
- Changes in coverage: dominance of specific networks
|
||
|
||
### microstates_dynamic()
|
||
|
||
Analyze transition patterns between microstates.
|
||
|
||
```python
|
||
dynamic_metrics = nk.microstates_dynamic(microstates)
|
||
```
|
||
|
||
**Metrics:**
|
||
- **Transition matrix**: Probability of transitioning from state i to state j
|
||
- Reveals preferential sequences
|
||
- **Transition rate**: Overall transition frequency
|
||
- Higher rate: more rapid switching
|
||
- **Entropy**: Randomness of transitions
|
||
- High entropy: unpredictable switching
|
||
- Low entropy: stereotyped sequences
|
||
- **Markov test**: Are transitions history-dependent?
|
||
|
||
**Returns:**
|
||
- Dictionary with transition statistics
|
||
|
||
**Use cases:**
|
||
- Identify abnormal microstate sequences in clinical populations
|
||
- Network dynamics and flexibility
|
||
- State-dependent information processing
|
||
|
||
### microstates_plot()
|
||
|
||
Visualize microstate topographies and time course.
|
||
|
||
```python
|
||
nk.microstates_plot(microstates, eeg_data)
|
||
```
|
||
|
||
**Displays:**
|
||
- Topographic maps for each microstate class
|
||
- GFP trace with microstate labels
|
||
- Transition plot showing state sequences
|
||
- Statistical summary
|
||
|
||
## MNE Integration Utilities
|
||
|
||
### mne_data()
|
||
|
||
Access sample datasets from MNE-Python.
|
||
|
||
```python
|
||
raw = nk.mne_data(dataset='sample', directory=None)
|
||
```
|
||
|
||
**Available datasets:**
|
||
- `'sample'`: Multi-modal (MEG/EEG) example
|
||
- `'ssvep'`: Steady-state visual evoked potentials
|
||
- `'eegbci'`: Motor imagery BCI dataset
|
||
|
||
### mne_to_df() / mne_to_dict()
|
||
|
||
Convert MNE objects to NeuroKit-compatible formats.
|
||
|
||
```python
|
||
df = nk.mne_to_df(raw)
|
||
data_dict = nk.mne_to_dict(epochs)
|
||
```
|
||
|
||
**Use case:**
|
||
- Work with MNE-processed data in NeuroKit2
|
||
- Convert between formats for analysis
|
||
|
||
### mne_channel_add() / mne_channel_extract()
|
||
|
||
Manage individual channels in MNE objects.
|
||
|
||
```python
|
||
# Extract specific channels
|
||
subset = nk.mne_channel_extract(raw, ['Fz', 'Cz', 'Pz'])
|
||
|
||
# Add derived channels
|
||
raw_with_eog = nk.mne_channel_add(raw, new_channel_data, ch_name='EOG')
|
||
```
|
||
|
||
### mne_crop()
|
||
|
||
Trim recordings by time or samples.
|
||
|
||
```python
|
||
cropped = nk.mne_crop(raw, tmin=10, tmax=100)
|
||
```
|
||
|
||
### mne_templateMRI()
|
||
|
||
Provide template anatomy for source localization.
|
||
|
||
```python
|
||
subjects_dir = nk.mne_templateMRI()
|
||
```
|
||
|
||
**Use case:**
|
||
- Source analysis without individual MRI
|
||
- Group-level source localization
|
||
- fsaverage template brain
|
||
|
||
### eeg_simulate()
|
||
|
||
Generate synthetic EEG signals for testing.
|
||
|
||
```python
|
||
synthetic_eeg = nk.eeg_simulate(duration=60, sampling_rate=250, n_channels=32)
|
||
```
|
||
|
||
## Practical Considerations
|
||
|
||
### Sampling Rate Recommendations
|
||
- **Minimum**: 100 Hz for basic power analysis
|
||
- **Standard**: 250-500 Hz for most applications
|
||
- **High-resolution**: 1000+ Hz for detailed temporal dynamics
|
||
|
||
### Recording Duration
|
||
- **Power analysis**: ≥2 minutes for stable estimates
|
||
- **Microstates**: ≥2-5 minutes, longer preferred
|
||
- **Resting state**: 3-10 minutes typical
|
||
- **Event-related**: Depends on trial count (≥30 trials per condition)
|
||
|
||
### Artifact Management
|
||
- **Eye blinks**: Remove with ICA or regression
|
||
- **Muscle artifacts**: High-pass filter (≥1 Hz) or manual rejection
|
||
- **Bad channels**: Detect and interpolate before analysis
|
||
- **Line noise**: Notch filter at 50/60 Hz
|
||
|
||
### Best Practices
|
||
|
||
**Power analysis:**
|
||
```python
|
||
# 1. Clean data
|
||
cleaned = nk.signal_filter(eeg_data, sampling_rate=250, lowcut=0.5, highcut=45)
|
||
|
||
# 2. Identify and interpolate bad channels
|
||
bad = nk.eeg_badchannels(cleaned, sampling_rate=250)
|
||
# Interpolate bad channels using MNE
|
||
|
||
# 3. Re-reference
|
||
rereferenced = nk.eeg_rereference(cleaned, reference='average')
|
||
|
||
# 4. Compute power
|
||
power = nk.eeg_power(rereferenced, sampling_rate=250, channels=channel_list)
|
||
```
|
||
|
||
**Microstate workflow:**
|
||
```python
|
||
# 1. Preprocess
|
||
cleaned = nk.microstates_clean(eeg_data, sampling_rate=250)
|
||
|
||
# 2. Determine optimal number of states
|
||
optimal_k = nk.microstates_findnumber(cleaned, show=True)
|
||
|
||
# 3. Segment microstates
|
||
microstates = nk.microstates_segment(cleaned, n_microstates=optimal_k,
|
||
sampling_rate=250, method='kmod')
|
||
|
||
# 4. Classify to standard labels
|
||
microstates = nk.microstates_classify(microstates)
|
||
|
||
# 5. Compute temporal metrics
|
||
static = nk.microstates_static(microstates)
|
||
dynamic = nk.microstates_dynamic(microstates)
|
||
|
||
# 6. Visualize
|
||
nk.microstates_plot(microstates, cleaned)
|
||
```
|
||
|
||
## Clinical and Research Applications
|
||
|
||
**Cognitive neuroscience:**
|
||
- Attention, working memory, executive function
|
||
- Language processing
|
||
- Sensory perception
|
||
|
||
**Clinical populations:**
|
||
- Epilepsy: seizure detection, localization
|
||
- Alzheimer's disease: slowing of EEG, microstate alterations
|
||
- Schizophrenia: altered microstates, especially state C
|
||
- ADHD: increased theta/beta ratio
|
||
- Depression: frontal alpha asymmetry
|
||
|
||
**Consciousness research:**
|
||
- Anesthesia monitoring
|
||
- Disorders of consciousness
|
||
- Sleep staging
|
||
|
||
**Neurofeedback:**
|
||
- Real-time frequency band training
|
||
- Alpha enhancement for relaxation
|
||
- Beta enhancement for focus
|
||
|
||
## References
|
||
|
||
- Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage, 180, 577-593.
|
||
- Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Transactions on Biomedical Engineering, 42(7), 658-665.
|
||
- Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., ... & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in neuroscience, 7, 267.
|